56 research outputs found

    The Pro12Ala Polymorphism of PPAR- γ

    Get PDF
    Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a ligand-binding nuclear receptor, and its activation plays a prominent role in regulating the inflammatory response. Therefore, PPAR-γ has been suggested as a candidate gene for sepsis. In the present study, we investigated the association between the Pro12Ala polymorphism of PPAR-γ and sepsis in a Han Chinese population. A total of 308 patients with sepsis and 345 healthy controls were enrolled in this study. Genotyping was performed using the polymerase chain reaction-ligation detection reaction (PCR-LDR) method. No significant differences were detected in the allele and genotype distributions of the PPAR-γ Pro12Ala SNP between septic patients and controls (P=0.622 for genotype; P=0.629 for allele). However, stratification by subtypes (sepsis, septic shock, and severe sepsis) revealed a statistically significant difference in the frequency of the Ala allele and Ala-carrier genotype between the patients with the sepsis subtype and the healthy controls (P=0.014 for allele and P=0.012, for genotype). Moreover, significant differences were found in the frequency of the Ala allele and genotype between the sepsis survivors and nonsurvivors (all P=0.002). In the survivors, the PPAR-γ Pro12Ala genotype was significantly associated with decreased disease severity and recovery time (all P<0.001). Thus, genetic polymorphism is thought to play a role in the development and outcome of sepsis

    The roles of sirtuins in ferroptosis

    Get PDF
    Ferroptosis represents a novel non-apoptotic form of regulated cell death that is driven by iron-dependent lipid peroxidation and plays vital roles in various diseases including cardiovascular diseases, neurodegenerative disorders and cancers. Plenty of iron metabolism-related proteins, regulators of lipid peroxidation, and oxidative stress-related molecules are engaged in ferroptosis and can regulate this complex biological process. Sirtuins have broad functional significance and are targets of many drugs in the clinic. Recently, a growing number of studies have revealed that sirtuins can participate in the occurrence of ferroptosis by affecting many aspects such as redox balance, iron metabolism, and lipid metabolism. This article reviewed the studies on the roles of sirtuins in ferroptosis and the related molecular mechanisms, highlighting valuable targets for the prevention and treatment of ferroptosis-associated diseases

    Genetic Variability of TCF4 in Schizophrenia of Southern Chinese Han Population: A Case-Control Study

    Get PDF
    Objective: Schizophrenia is thought to be a neurodevelopmental disorder. As a key regulator in the development of the central nervous system, transcription factor 4 (TCF4) has been shown to be involved in the pathogenesis of schizophrenia. The aim of our study was to assay the association of TCF4 single nucleotide polymorphisms (SNPs) with schizophrenia and the effect of these SNPs on phenotypic variability in schizophrenia in Southern Chinese Han Population.Methods: Four SNPs (rs9960767, rs2958182, rs4309482, and rs12966547) of TCF4 were genotyped in 1137 schizophrenic patients and 1035 controls in a Southern Chinese Han population using the improved multiplex ligation detection reaction (iMLDR) technique. For patients with schizophrenia, the severity of symptom phenotypes was analyzed by the five-factor model of the Positive and Negative Symptom Scale (PANSS). Cognitive function was assessed using the Brief Assessment of Cognition in Schizophrenia (BACS) scale.Results: The results showed that the genotypes and alleles of the three SNPs (rs2958182, rs4309482, and rs12966547) were not significantly different between the control group and the case group (all P &gt; 0.05). rs9960767 could not be included in the statistics for the extremely low minor allele frequency. However, the genotypes of rs4309482 shown a potential risk in the positive symptoms (P = 0.04) and excitement symptoms (P = 0.04) of the five-factor model of PANSS, but not survived in multiple test correction. The same potential risk was shown in the rs12966547 in positive symptoms of the PANSS (P = 0.03).Conclusion: Our results failed to find the associations of SNPs (rs2958182, rs4309482, and rs12966547) in TCF4 with schizophrenia in Southern Chinese Han Population

    Association of Polymorphisms of the Matrix Metalloproteinase 9 Gene with Ischaemic Stroke in a Southern Chinese Population

    Get PDF
    Background/Aims: Matrix metalloproteinase 9 (MMP9), a potent endopeptidase degrading extracellular matrix, plays a pivotal role in the pathogenesis of ischaemic stroke (IS). The present study was undertaken to determine the association of MMP9 gene polymorphisms and the risk of IS in a southern Chinese population. Methods: A cohort of 1274 patients and 1258 age-matched healthy controls were genotyped to detect the four MMP9 polymorphisms (rs17156, rs3787268, rs3918241 and rs3918242) using SNaPshot. Results: Our study demonstrated a significant difference in the genotype and allele frequencies of the MMP9 rs3918242 polymorphism between the IS patients and the controls (P = 0.012 for the genotype and P = 0.0092 for the allele). Stratification by smoking status showed statistically significant differences in the frequency and allele of the rs3918242 polymorphism between IS patients and the controls (P = 0.0052 for the genotype and P = 0.0019 for the allele). Further stratification by IS subtypes revealed that the presence of the T allele of the MMP9 rs3918242 polymorphism confers a higher risk of the large artery atherosclerosis subtype of IS (P = 0.017). Moreover, IS patients with the rs3918242 T allele of MMP9 presented with increased serum MMP9 production, and this increase was more significant in smokers with IS (P = 0.022). Patients carrying the variant T allele of the MMP9 rs3918242 polymorphism exhibited significantly higher infarct volumes than those with the major CC genotype (P = 0.036). Conclusion: Our study provides preliminary evidence that the MMP9 rs3918242 polymorphism is linked to a higher risk of IS, confirming the role of MMP9 in the pathophysiology of IS, with potentially important therapeutic implications

    Association of the Synapse-Associated Protein 97 (SAP97) Gene Polymorphism With Neurocognitive Function in Schizophrenic Patients

    Get PDF
    The SAP97 gene is located in the schizophrenia susceptibility locus 3q29, and it encodes the synaptic scaffolding protein that interacts with the N-methyl-D-aspartate (NMDA) receptor, which is presumed to be dysregulated in schizophrenia. In this study, we genotyped a single-nucleotide polymorphism (SNP) (rs3915512) in the SAP97 gene in 1114 patients with schizophrenia and 1036 healthy-matched controls in a Han Chinese population through the improved multiplex ligation detection reaction (imLDR) technique. Then, we analyzed the association between this SNP and the patients' clinical symptoms and neurocognitive function. Our results showed that there were no significant differences in the genotype and allele frequencies between the patients and the controls for the rs3915512 polymorphism. However, patients with the rs3915512 polymorphism TT genotype had higher neurocognitive function scores (list learning scores, symbol coding scores, category instances scores and controlled oral word association test scores) than the subjects with the A allele (P = 4.72 × 10−5, 0.027, 0.027, 0.013, respectively). Our data are the first to suggest that the SAP97 rs3915512 polymorphism may affect neurocognitive function in patients with schizophrenia

    miR-137: A New Player in Schizophrenia

    No full text
    Schizophrenia is a complex genetic disease and characterized by affective, cognitive, neuromorphological, and molecular abnormalities that may have a neurodevelopmental origin. MicroRNAs (miRNAs) are critical to neurodevelopment and adult neuronal processes by modulating the activity of multiple genes within biological networks. MiR-137 as a brain-enriched microRNA, plays important roles in regulating embryonic neural stem cells (NSCs) fate determination, neuronal proliferation and differentiation, and synaptic maturation. Its dysregulation causes changes in the gene expression regulation network of the nervous system, thus inducing mental disorders. Recently, miR-137 has been confirmed as a gene related to schizophrenia susceptibility. In the following review, we summarize the expression pattern, epigenetic regulation and functions of miR-137. A more complete picture of the miR-137, which is dysregulated in psychiatric illness, may improve our understanding of the molecular mechanisms underlying schizophrenia

    Emerging roles of SIRT1 activator, SRT2104, in disease treatment

    No full text
    Abstract Silent information regulator 1 (SIRT1) is a NAD+-dependent class III deacetylase that plays important roles in the pathogenesis of numerous diseases, positioning it as a prime candidate for therapeutic intervention. Among its modulators, SRT2104 emerges as the most specific small molecule activator of SIRT1, currently advancing into the clinical translation phase. The primary objective of this review is to evaluate the emerging roles of SRT2104, and to explore its potential as a therapeutic agent in various diseases. In the present review, we systematically summarized the findings from an extensive array of literature sources including the progress of its application in disease treatment and its potential molecular mechanisms by reviewing the literature published in databases such as PubMed, Web of Science, and the World Health Organization International Clinical Trials Registry Platform. We focuses on the strides made in employing SRT2104 for disease treatment, elucidating its potential molecular underpinnings based on preclinical and clinical research data. The findings reveal that SRT2104, as a potent SIRT1 activator, holds considerable therapeutic potential, particularly in modulating metabolic and longevity-related pathways. This review establishes SRT2104 as a leading SIRT1 activator with significant therapeutic promise

    Association of Polymorphisms of the Receptor for Advanced Glycation Endproducts Gene with Schizophrenia in a Han Chinese Population

    No full text
    Receptor for Advanced Glycation Endproducts (RAGE) is a member of the immunoglobulin superfamily that binds diverse ligands involved in the development of inflammatory damage and diverse chronic diseases including schizophrenia. Here, three single-nucleotide polymorphisms (SNPs) (G82S, -374T/A, and -429T/C) in the RAGE gene were genotyped in 923 patients with schizophrenia and 874 healthy-matched controls in a Han Chinese population using the SNaPshot technique. Additionally, we investigated the association among aforementioned SNPs with the clinical psychotic symptoms of the patients and neurocognitive function. Our study demonstrated that the frequencies of the TC + CC genotypes and the C allele in the -429T/C polymorphism were significantly lower in the patients compared with the controls (p=0.031 and p=0.034, resp.). However, the significant effect disappeared when using Bonferroni correction (p=0.093 and p=0.102, resp.). And there were no significant differences in the genotype and allele frequencies between the patients and the controls for G82S and -374T/A polymorphisms. Additionally, the -429T/C C allele carriers had marginally higher Symbol coding scores than the subjects with the TT genotypes [p=0.031 and p (corr) = 0.093]. Our data indicate that the RAGE -429T/C polymorphism may be associated with the susceptibility of schizophrenia
    corecore