18 research outputs found
Etude et developpement d'une application pedagogique en robotique : gestion d'un bras articule et d'un robot mobile
SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
Influence of Space Charge on Dielectric Property and Breakdown Strength of Polypropylene Dielectrics under Strong Electric Field
Space charge accumulation in polypropylene (PP) affect the dielectric properties and breakdown strength of the material. The pre-injected charge in PP under the action of different polarity voltage is quantitatively characterized, and the effects of the pre-injected charge inside the dielectric on the dielectric properties and breakdown strength are measured and analyzed. Based on the molecular simulations, the influence mechanism of the temperature on dielectric properties and breakdown are discussed. The experimental results show that the injected charges in PP under the negative polarity voltage is significantly larger than that of the positive polarity. These charges have a great influence on the dielectric constant and breakdown performance of PP, and the effect is different for different charge polarity. The effect of negative polarity pre-voltage conditions on the dielectric constant is much greater than that of positive polarity, and the dielectric constant of PP decreases from 2.2 to 1.3, decreasing about 41% under the negative polarity pre-voltage. By contrast, the dielectric constant slightly increases under the effect of the homopolar preload. Furthermore, the breakdown strength of the dielectric after the heteropolar preload is 249 kV/mm, which is 36% lower than that of PP without pre-voltage, and it slightly increases after the positive polarity pre-voltage. As the temperature increases, the increase in free volume favors the development of electron collision ionization and electron collapse processes, leading to a decrease in breakdown voltage at high temperatures. This work has a good guiding significance for the comprehensive evaluation of energy storage parameters
Equol, a Clinically Important Metabolite, Inhibits the Development and Pathogenicity of Magnaporthe oryzae, the Causal Agent of Rice Blast Disease
Equol, a metabolite of soybean isoflavone daidzein, has been proven to have various bioactivities related to human health, but little is known on its antifungal activity to plant fungal pathogens. Magnaporthe oryzae is a phytopathogenic fungus that causes rice blast, a devastating disease on rice. Here, we demonstrated that equol influences the development and pathogenicity of M. oryzae. Equol showed a significant inhibition to the mycelial growth, conidial generation and germination, and appressorial formation of M. oryzae. As a result, equol greatly reduced the virulence of M. oryzae on rice and barley leaves. The antifungal activity of equol was also found in several other plant fungal pathogens. These findings expand our knowledge on the bioactivities of equol
Selection and Validation of Reliable Reference Genes for qRT-PCR Normalization of <i>Bursaphelenchus xylophilus</i> from Different Temperature Conditions and Developmental Stages
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a powerful technique for studying gene expression. The key to quantitative accuracy depends on the stability of the reference genes used for data normalization under different experimental conditions. Pine wood nematode (PWN, Bursaphelenchus xylophilus) is the causal agent of the devastating pine wilt disease (PWD). Extensive and prompt research is needed to understand the molecular mechanism of PWD, but identification of the reference PWN genes for standardized qRT-PCR has not been reported yet. We have analyzed eight candidate reference genes of PWN across different temperature conditions and developmental stages. Delta Ct method, GeNorm, NormFinder, BestKeeper, and RefFinder algorithms were used to evaluate the stability of expression of these genes. Finally, we use heat shock protein 90 (HSP90) in different temperatures and arginine kinase gene (AK) in different developmental stages to confirm the stability of these genes. UBCE and EF1γ were most stable across different temperature treatments, whereas EF1γ and Actin were most stable across different developmental stages. In general, these results indicate that EF1γ is the most stable gene for qRT-PCR under different conditions. The systematic analysis of qRT-PCR reference gene selection will be helpful for future functional analysis and exploration of B. xylophilus genetic resources