12,694 research outputs found

    Constraints on inflation revisited: An analysis including the latest local measurement of the Hubble constant

    Full text link
    We revisit the constraints on inflation models by using the current cosmological observations involving the latest local measurement of the Hubble constant (H0=73.00±1.75H_{0} = 73.00\pm 1.75 km s −1^{-1} Mpc−1^{-1}). We constrain the primordial power spectra of both scalar and tensor perturbations with the observational data including the Planck 2015 CMB full data, the BICEP2 and Keck Array CMB B-mode data, the BAO data, and the direct measurement of H0H_0. In order to relieve the tension between the local determination of the Hubble constant and the other astrophysical observations, we consider the additional parameter NeffN_{\rm eff} in the cosmological model. We find that, for the Λ\LambdaCDM+rr+NeffN_{\rm eff} model, the scale invariance is only excluded at the 3.3σ\sigma level, and ΔNeff>0\Delta N_{\rm eff}>0 is favored at the 1.6σ\sigma level. Comparing the obtained 1σ\sigma and 2σ\sigma contours of (ns,r)(n_s,r) with the theoretical predictions of selected inflation models, we find that both the convex and concave potentials are favored at 2σ\sigma level, the natural inflation model is excluded at more than 2σ\sigma level, the Starobinsky R2R^2 inflation model is only favored at around 2σ\sigma level, and the spontaneously broken SUSY inflation model is now the most favored model.Comment: 10 pages, 6 figure

    Constraining dark energy with Hubble parameter measurements: an analysis including future redshift-drift observations

    Full text link
    Dark energy affects the Hubble expansion rate (namely, the expansion history) H(z)H(z) by an integral over w(z)w(z). However, the usual observables are the luminosity distances or the angular diameter distances, which measure the distance-redshift relation. Actually, dark energy affects the distances (and the growth factor) by a further integration over functions of H(z)H(z). Thus, the direct measurements of the Hubble parameter H(z)H(z) at different redshifts are of great importance for constraining the properties of dark energy. In this paper, we show how the typical dark energy models, for example, the Λ\LambdaCDM, wwCDM, CPL, and holographic dark energy (HDE) models, can be constrained by the current direct measurements of H(z)H(z) (31 data in total, covering the redshift range of z∈[0.07,2.34]z\in [0.07,2.34]). In fact, the future redshift-drift observations (also referred to as the Sandage-Loeb test) can also directly measure H(z)H(z) at higher redshifts, covering the range of z∈[2,5]z\in [2,5]. We thus discuss what role the redshift-drift observations can play in constraining dark energy with the Hubble parameter measurements. We show that the constraints on dark energy can be improved greatly with the H(z)H(z) data from only a 10-year observation of redshift drift.Comment: 20 pages, 5 figures; final version published in EPJ

    Manipulating thermal conductivity through substrate coupling

    Full text link
    We report a new approach to the thermal conductivity manipulation -- substrate coupling. Generally, the phonon scattering with substrates can decrease the thermal conductivity, as observed in recent experiments. However, we find that at certain regions, the coupling to substrates can increase the thermal conductivity due to a reduction of anharmonic phonon scattering induced by shift of the phonon band to the low wave vector. In this way, the thermal conductivity can be efficiently manipulated via coupling to different substrates, without changing or destroying the material structures. This idea is demonstrated by calculating the thermal conductivity of modified double-walled carbon nanotubes and also by the ice nanotubes coupled within carbon nanotubes.Comment: 5 figure

    Confronting brane inflation with Planck and pre-Planck data

    Full text link
    In this paper, we compare brane inflation models with the Planck data and the pre-Planck data (which combines WMAP, ACT, SPT, BAO and H0 data). The Planck data prefer a spectral index less than unity at more than 5\sigma confidence level, and a running of the spectral index at around 2\sigma confidence level. We find that the KKLMMT model can survive at the level of 2\sigma only if the parameter β\beta (the conformal coupling between the Hubble parameter and the inflaton) is less than O(10−3)\mathcal{O}(10^{-3}), which indicates a certain level of fine-tuning. The IR DBI model can provide a slightly larger negative running of spectral index and red tilt, but in order to be consistent with the non-Gaussianity constraints from Planck, its parameter also needs fine-tuning at some level.Comment: 10 pages, 8 figure
    • …
    corecore