2,418 research outputs found

    Reveal flocking of birds flying in fog by machine learning

    Full text link
    We study the first-order flocking transition of birds flying in low-visibility conditions by employing three different representative types of neural network (NN) based machine learning architectures that are trained via either an unsupervised learning approach called "learning by confusion" or a widely used supervised learning approach. We find that after the training via either the unsupervised learning approach or the supervised learning one, all of these three different representative types of NNs, namely, the fully-connected NN, the convolutional NN, and the residual NN, are able to successfully identify the first-order flocking transition point of this nonequilibrium many-body system. This indicates that NN based machine learning can be employed as a promising generic tool to investigate rich physics in scenarios associated to first-order phase transitions and nonequilibrium many-body systems.Comment: 7 pages, 3 figure

    Scanning-probe and information-concealing machine learning intermediate hexatic phase and critical scaling of solid-hexatic phase transition in biological tissues

    Full text link
    We investigate the two-dimensional melting of biological tissues that are modeled by deformable polymeric particles with multi-body interactions described by the Voronoi model. We identify the existence of the intermediate hexatic phase in this system, and the critical scaling of the associated solid-hexatic phase transition with the critical exponent ν≈0.65\nu\approx0.65 for the divergence of the correlation length. Moreover, we clarify the discontinuous nature of the hexatic-liquid phase transition in this system. These findings are achieved by directly analyzing system's spatial configurations with two generic machine learning approaches developed in this work, dubbed "scanning-probe" via which the possible existence of intermediate phases can be efficiently detected, and "information-concealing" via which the critical scaling of the correlation length in the vicinity of generic continuous phase transition can be extracted. Our work provides new physical insights into the fundamental nature of the two-dimensional melting of biological tissues, and establishes a new type of generic toolbox to investigate fundamental properties of phase transitions in various complex systems.Comment: 8 pages, 5 figure

    Systematic study of elliptic flow parameter in the relativistic nuclear collisions at RHIC and LHC energies

    Get PDF
    We employed the new issue of a parton and hadron cascade model PACIAE 2.1 to systematically investigate the charged particle elliptic flow parameter v2v_2 in the relativistic nuclear collisions at RHIC and LHC energies. With randomly sampling the transverse momentum xx and yy components of the particles generated in string fragmentation on the circumference of an ellipse instead of circle originally, the calculated charged particle v2(η)v_2(\eta) and v2(pT)v_2(p_T) fairly reproduce the corresponding experimental data in the Au+Au/Pb+Pb collisions at sNN\sqrt{s_{NN}}=0.2/2.76 TeV. In addition, the charged particle v2(η)v_2(\eta) and v2(pT)v_2(p_T) in the p+p collisions at s\sqrt s=7 TeV as well as in the p+Au/p+Pb collisions at sNN\sqrt{s_{NN}}=0.2/5.02 TeV are predicted.Comment: 7 pages, 5 figure

    Noise in Genotype Selection Model

    Full text link
    We study the steady state properties of a genotype selection model in presence of correlated Gaussian white noise. The effect of the noise on the genotype selection model is discussed. It is found that correlated noise can break the balance of gene selection and induce the phase transition which can makes us select one type gene haploid from a gene group.Comment: 8 pages, 4 figure
    • …
    corecore