29,203 research outputs found

    Pseudo entropy and pseudo-Hermiticity in quantum field theories

    Full text link
    In this paper, we explore the concept of pseudo R\'enyi entropy within the context of quantum field theories (QFTs). The transition matrix is constructed by applying operators situated in different regions to the vacuum state. Specifically, when the operators are positioned in the left and right Rindler wedges respectively, we discover that the logarithmic term of the pseudo R\'enyi entropy is necessarily real. In other cases, the result might be complex. We provide direct evaluations of specific examples within 2-dimensional conformal field theories (CFTs). Furthermore, we establish a connection between these findings and the pseudo-Hermitian condition. Our analysis reveals that the reality or complexity of the logarithmic term of pseudo R\'enyi entropy can be explained through this pseudo-Hermitian framework. Additionally, we investigate the divergent term of the pseudo R\'enyi entropy. Interestingly, we observe a universal divergent term in the second pseudo R\'enyi entropy within 2-dimensional CFTs. This universal term is solely dependent on the conformal dimension of the operator under consideration. For nn-th pseudo R\'enyi entropy (n≥3n\ge 3), the divergent term is intricately related to the specific details of the underlying theory.Comment: 26+12 pages, many figure

    A comparative study of two molecular mechanics models based on harmonic potentials

    Full text link
    We show that the two molecular mechanics models, the stick-spiral and the beam models, predict considerably different mechanical properties of materials based on energy equivalence. The difference between the two models is independent of the materials since all parameters of the beam model are obtained from the harmonic potentials. We demonstrate this difference for finite width graphene nanoribbons and a single polyethylene chain comparing results of the molecular dynamics (MD) simulations with harmonic potentials and the finite element method with the beam model. We also find that the difference strongly depends on the loading modes, chirality and width of the graphene nanoribbons, and it increases with decreasing width of the nanoribbons under pure bending condition. The maximum difference of the predicted mechanical properties using the two models can exceed 300% in different loading modes. Comparing the two models with the MD results of AIREBO potential, we find that the stick-spiral model overestimates and the beam model underestimates the mechanical properties in narrow armchair graphene nanoribbons under pure bending condition.Comment: 40 pages, 21 figure
    • …
    corecore