846 research outputs found

    Long-Term Organic Farming Manipulated Rhizospheric Microbiome and Bacillus Antagonism Against Pepper Blight (Phytophthora capsici)

    Get PDF
    Soil-borne diseases are often less severe in organic farms, possibly because of the recruitment of beneficial microorganisms by crops. Here, the suppressiveness of organic, integrated, and conventionally managed soils to pepper blight (Phytophthora capsici) was studied in growth chamber experiments. Disease incidence was 41.3 and 34.1% lower in the soil from an organic farming system than in either the soil from the integrated or from the conventional farming systems, respectively. Beta-diversity of rhizospheric microbial communities differed among treatments, with enrichment of Bacillus, Sporosarcina, Acidobacteria Gp5, Gp6, Gp22, and Ignavibacterium by the organic soil. Cultivation-dependent analysis indicated that 50.3% of in vitro antagonists of P. capsici isolated from the rhizosphere of healthy peppers were affiliated to Bacillus. An integration of in vitro antagonists and bacterial diversity analyses indicated that Bacillus antagonists were higher in the rhizosphere of pepper treated by the organic soil. A microbial consortium of 18 in vitro Bacillus antagonists significantly increased the suppressiveness of soil from the integrated farming system against pepper blight. Overall, the soil microbiome under the long-term organic farming system was more suppressive to pepper blight, possibly owing to Bacillus antagonism in the rhizosphere. This study provided insights into microbiome management for disease suppression under greenhouse conditions

    Unlocking Low-Light-Rainy Image Restoration by Pairwise Degradation Feature Vector Guidance

    Full text link
    Rain in the dark is a common natural phenomenon. Photos captured in such a condition significantly impact the performance of various nighttime activities, such as autonomous driving, surveillance systems, and night photography. While existing methods designed for low-light enhancement or deraining show promising performance, they have limitations in simultaneously addressing the task of brightening low light and removing rain. Furthermore, using a cascade approach, such as ``deraining followed by low-light enhancement'' or vice versa, may lead to difficult-to-handle rain patterns or excessively blurred and overexposed images. To overcome these limitations, we propose an end-to-end network called L2RIRNetL^{2}RIRNet which can jointly handle low-light enhancement and deraining. Our network mainly includes a Pairwise Degradation Feature Vector Extraction Network (P-Net) and a Restoration Network (R-Net). P-Net can learn degradation feature vectors on the dark and light areas separately, using contrastive learning to guide the image restoration process. The R-Net is responsible for restoring the image. We also introduce an effective Fast Fourier - ResNet Detail Guidance Module (FFR-DG) that initially guides image restoration using detail image that do not contain degradation information but focus on texture detail information. Additionally, we contribute a dataset containing synthetic and real-world low-light-rainy images. Extensive experiments demonstrate that our L2RIRNetL^{2}RIRNet outperforms existing methods in both synthetic and complex real-world scenarios

    Data-constrained Magnetohydrodynamic Simulation of an Intermediate Solar Filament Eruption

    Full text link
    Solar eruptive activities could occur in weak magnetic field environments and over large spatial scales, especially relevant to eruptions involving intermediate or quiescent solar filaments. To handle the large scales, we implement and apply a flux rope embedding method using regularized Biot-Savart laws in the spherical coordinate system. Combined with a potential field source surface model and a magneto-frictional method, a nonlinear force-free field comprising a flux rope embedded in a potential field is constructed. Using the combined nonlinear force-free field as the initial condition, we then perform a zero-β\beta data-constrained magnetohydrodynamic (MHD) simulation for an M8.7 flare at 03:38 UT on 2012 January 23. The MHD model reproduces the eruption process, flare ribbon evolution (represented by the quasi-separatrix layer evolution) and kinematics of the flux rope. This approach could potentially model global-scale eruptions from weak field regions.Comment: 23 pages, 7 figures, accepted for publicaiton in Ap

    Effect of a Zn impurity on T_c and its implication to pairing symmetry in LaFeAsO1x_{1-x}Fx_x

    Full text link
    The effect of non-magnetic Zn impurity on superconductivity in LaFe1y_{1-y}Zny_yAsO1x_{1-x}Fx_x system is studied systematically. In the presence of Zn impurity, the superconducting transition temperature increases in the under-doped regime, remains unchanged in the optimally doped regime, and is severely suppressed in the over-doped regime. Our results suggest a switch of the symmetry of the superconducting order parameters from a ss-wave to s±s_{\pm} or dd-wave states as the charge carrier doping increases in FeAs-based superconductors.Comment: 4 pages, 4 figures. Format changed and a few revisons mad

    Derivation and Characterization of Hepatic Progenitor Cells from Human Embryonic Stem Cells

    Get PDF
    The derivation of hepatic progenitor cells from human embryonic stem (hES) cells is of value both in the study of early human liver organogenesis and in the creation of an unlimited source of donor cells for hepatocyte transplantation therapy. Here, we report for the first time the generation of hepatic progenitor cells derived from hES cells. Hepatic endoderm cells were generated by activating FGF and BMP pathways and were then purified by fluorescence activated cell sorting using a newly identified surface marker, N-cadherin. After co-culture with STO feeder cells, these purified hepatic endoderm cells yielded hepatic progenitor colonies, which possessed the proliferation potential to be cultured for an extended period of more than 100 days. With extensive expansion, they co-expressed the hepatic marker AFP and the biliary lineage marker KRT7 and maintained bipotential differentiation capacity. They were able to differentiate into hepatocyte-like cells, which expressed ALB and AAT, and into cholangiocyte-like cells, which formed duct-like cyst structures, expressed KRT19 and KRT7, and acquired epithelial polarity. In conclusion, this is the first report of the generation of proliferative and bipotential hepatic progenitor cells from hES cells. These hES cell–derived hepatic progenitor cells could be effectively used as an in vitro model for studying the mechanisms of hepatic stem/progenitor cell origin, self-renewal and differentiation

    (E)-N′-(4-Nitro­benzyl­idene)-4-(8-quinol­yloxy)butano­hydrazide

    Get PDF
    In the title compound, C20H18N4O4, conformation along the bond sequence linking the benzene and quinoline rings, which have a mean inter­planar dihedral angle of 2.7 (5)°, is trans–(+)gauche–trans–trans–(−)gauche–trans–trans. In the crystal structure, a pair of inter­molecular N—H⋯O hydrogen bonds links the mol­ecules into centrosymmetric cyclic R 2 2(8) dimers, which are aggregated via π–π inter­actions into parallel sheets [quinoline–benzene ring centroid separation = 3.6173 (16)–3.6511 (16) Å]. The sheets are further connected through weak C—H⋯O inter­actions, giving a supra­molecular two-dimensional network

    Human herpesvirus 6A induces apoptosis of primary human fetal astrocytes via both caspase-dependent and -independent pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human herpesvirus 6 (HHV-6) is a T-lymphtropic and neurotropic virus that can infect various types of cells. Sequential studies reported that apoptosis of glia and neurons induced by HHV-6 might act a potential trigger for some central nervous system (CNS) diseases. HHV-6 is involved in the pathogenesis of encephalitis, multiple sclerosis (MS) and fatigue syndrome. However, the mechanisms responsible for the apoptosis of infected CNS cells induced by HHV-6 are poorly understood. In this study, we investigated the cell death processes of primary human fetal astrocytes (PHFAs) during productive HHV-6A infection and the underlying mechanisms.</p> <p>Results</p> <p>HHV-6A can cause productive infection in primary human fetal astrocytes. Annexin V-PI staining and electron microscopic analysis indicated that HHV-6A was an inducer of apoptosis. The cell death was associated with activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP), which is known to be an important substrate for activated caspase-3. Caspase-8 and -9 were also significantly activated in HHV-6A-infected cells. Moreover, HHV-6A infection led to Bax up-regulation and Bcl-2 down-regulation. HHV-6A infection increased the release of Smac/Diablo, AIF and cytochrome c from mitochondria to cytosol, which induced apoptosis via the caspase-dependent and -independent pathways. In addition, we also found that anti-apoptotic factors such as IAPs and NF-κB decreased in HHV-6A infected PHFAs.</p> <p>Conclusion</p> <p>This is the first demonstration of caspase-dependent and -independent apoptosis in HHV-6A-infected glial cells. These findings would be helpful in understanding the mechanisms of CNS diseases caused by HHV-6.</p

    Catalytically efficient Ni-NiOₓ-Y₂O₃ interface for medium temperature water-gas shift reaction

    Get PDF
    The metal-support interfaces between metals and oxide supports have long been studied in catalytic applications, thanks to their significance in structural stability and efficient catalytic activity. The metal-rare earth oxide interface is particularly interesting because these early transition cations have high electrophilicity, and therefore good binding strength with Lewis basic molecules, such as H2O. Based on this feature, here we design a highly efficient composite Ni-Y2O3 catalyst, which forms abundant active Ni-NiOx-Y2O3 interfaces under the water-gas shift (WGS) reaction condition, achieving 140.6 μmolCO gcat-1 s-1 rate at 300 °C, which is the highest activity for Ni-based catalysts. A combination of theory and ex/in situ experimental study suggests that Y2O3 helps H2O dissociation at the Ni-NiOx-Y2O3 interfaces, promoting this rate limiting step in the WGS reaction. Construction of such new interfacial structure for molecules activation holds great promise in many catalytic systems
    corecore