761 research outputs found
Local Alignment of the BABAR Silicon Vertex Tracking Detector
The BABAR Silicon Vertex Tracker (SVT) is a five-layer double-sided silicon
detector designed to provide precise measurements of the position and direction
of primary tracks, and to fully reconstruct low-momentum tracks produced in
e+e- collisions at the PEP-II asymmetric collider at Stanford Linear
Accelerator Center. This paper describes the design, implementation,
performance, and validation of the local alignment procedure used to determine
the relative positions and orientations of the 340 SVT wafers. This procedure
uses a tuned mix of in-situ experimental data and complementary lab-bench
measurements to control systematic distortions. Wafer positions and
orientations are determined by minimizing a chisquared computed using these
data for each wafer individually, iterating to account for between-wafer
correlations. A correction for aplanar distortions of the silicon wafers is
measured and applied. The net effect of residual mis-alignments on relevant
physical variables is evaluated in special control samples. The BABAR
data-sample collected between November 1999 and April 2008 is used in the study
of the SVT stability.Comment: 21 pages, 20 figures, 3 tables, submitted to Nucl. Instrum. Meth.
Testing CP and Time Reversal Symmetries with Decays
In this letter, an overview is given for interesting tests of both CP and
Time Reversal symmetries with the beauty baryon . Extensive use of
the helicity formalism and HQET is done for all calculations. Then, emphasis is
put on sophisticated methods like analysis of resonance polarizations and
particular angle distributions which can exhibit a clear signal of TR
violation.Comment: 4 pages, 1 figure, 3 tables. Talk given at the 13th International QCD
Conference 3-7th July 2006 Montpellier (France
Influence of Different Preparation Processes on the Mechanical Properties of Carbon Nanotube-Reinforced Copper Matrix Composites
Experiments on the uniform distribution of carbon nanotubes in the copper matrix using different ball milling methods were performed. The effect of different preparation processes for carbon nanotube (CNT)-reinforced copper matrix composites on their conductivity and mechanical properties was also analyzed. High-performance carbon nanotube-reinforced copper matrix composites containing 1 vol.% CNT by the best preparation process termed flake ball milling (FBM) possess good interface bonding strength not only with CNT evenly dispersed in the copper matrix but also with the CNT morphology and structure having the utmost integrity. Tensile strength increased by 30% with an elongation of 26% and electrical conductivity of 85% IACS as compared to a pure copper block prepared from the same FBM powders.Выполнены эксперименты по оценке равномерности распределения углеродных нанотрубок в медной матрице с использованием разных методов размола в шаровой мельнице. Проанализировано влияние различных методов изготовления композиционных материалов с медной матрицей, упрочненных углеродными нанотрубками, на их электропроводность и механические свойства. Высококачественные композиционные материалы (содержат 1 об.% углеродных нанотрубок), изготовляемые наиболее эффективным способом, получившим навание размол в шаровой мельнице для придания пластинчатой структуры , приобретают хорошую прочность сцепления на поверхности контакта не только при равномерном распределении углеродных нанотрубок в медной матрице, но и при максимальной целостности их морфологии и структуры. Предел прочности при растяжении возрастал на 30% при удлинении 26% и электропроводности 85% по стандарту IACS по сравнению с заготовкой из чистой меди, изготовленной из тех же пластинчатых порошков
Effect of cytokinins on shoot regeneration from cotyledon and leaf segment of stem mustard (Brassica juncea var. tsatsai)
Cotyledon and leaf segments of stem mustard (Brassica juncea var. tsatsai) were cultured on Murashige and Skoog medium supplemented with various concentrations of different cytokinins [6-benzyladenine (BA), N-(2-chloro-4-pyridyl)-n-phenylurea (CPPU), 6-furfurylaminopurine (KT) and thidiazuron (TDZ)] in combinations with different levels of ¿-naphthalene acetic acid (NAA). The shoot regeneration frequency of cotyledon and leaf segment was dependent on the kinds and concentrations of cytokinins used in the medium, while in most cases cotyledon gave high regeneration frequency than leaf segment. TDZ proved to be the best cytokinin to induce shoot from both cotyledon and leaf segments compared to BA, KT and CPPU. The highest frequency of shoot regeneration was 61.3¿67.9 % in cotyledon and 40.7¿52.4% in leaf segment respectively when 2.27 or 4.54 ¿M TDZ was combined with 5.37 ¿M NAA. Next to TDZ, CPPU was also very suitable to induce shoot formation both in cotyledon and leaf segment. When 1.61 ¿M CPPU was combined with 2.69 ¿M NAA, shoot regeneration frequency was 45.0% in cotyledon and 36.4% in leaf segment, respectively. It was also shown that KT and BA affected shoot regeneration from cotyledon and leaf segment, the shoot regeneration was greatly increased when NAA was added together with cytokinins. The efficient and reliable shoot regeneration system was developed in both cotyledon and leaf segments. This regeneration protocol may be applicable to the improvement of this crop by genetic engineering in the futur
Elastic and electronic properties of fluorite RuO₂ from first principle
The elastic, thermodynamic, and electronic properties of fluorite RuO₂ under high pressure are investigated by plane-wave pseudopotential density functional theory. The optimized lattice parameters, elastic constants, bulk modulus, and shear modulus are consistent with other theoretical values. The phase transition from modified fluorite-type to fluorite is 88 GPa (by localized density approximation, LDA) or 115.5 GPa (by generalized gradient approximation, GGA). The Young's modulus and Lamé's coefficients are also studied under high pressure. The structure turned out to be stable for the pressure up to 120 GPa by calculating elastic constants. In addition, the thermodynamic properties, including the Debye temperature, heat capacity, thermal expansion coefficient, Grüneisen parameter, and Poisson's ratio, are investigated. A small band gap is found in the electronic structure of fluorite RuO₂ and the bandwidth increases with the pressure. Also, the present mechanical and electronic properties demonstrate that the bonding nature is a combination of covalent, ionic, and metallic contributions.Пружнi, термодинамiчнi та електричнi властивостi флюориту RuO₂ при високому тиску дослiджуються за допомогою теорiї функцiоналу густини з плоскохвильовим псевдопотенцiалом. Оптимiзованi параметри гратки, пружнi сталi, об’ємний модуль i модуль зсуву узгоджуються з iншими теоретичними значеннями.
Фазовий перехiд з модифiкованого флюориту до флюориту є при 88 GPa (наближення локальної густини, LDA), чи при 115.5 GPa (узагальнене градiєнтне наближення, GGA). Також дослiджено модуль Юнга i коефiцiєнти Ламе при високих тисках. Структура є стабiльною для тискiв до 120 GPa, якщо обчислювати пружнi сталi. Крiм того, дослiджено термодинамiчнi властивостi, включаючи температуру Дебая, теплоємнiсть, коефiцiєнт теплового розширення, параметр Грюнайзена i коефiцiєнт Пуассона. В електроннiй структурi флюориту RuO₂ знайдено малу зонну щiлину i ширина зони зростає iз тиском. Також, представленi механiчнi та електроннi властивостi демонструють, що природа зв’язування є комбiнацiєю ковалентного, iонного i металiчного вкладiв
Search for Invisible Decays of and in and
Using a data sample of decays collected with the BES
II detector at the BEPC, searches for invisible decays of and
in to and are performed.
The signals, which are reconstructed in final states, are used
to tag the and decays. No signals are found for the
invisible decays of either or , and upper limits at the 90%
confidence level are determined to be for the ratio
and for . These are the first
searches for and decays into invisible final states.Comment: 5 pages, 4 figures; Added references, Corrected typo
Observation of Two New N* Peaks in J/psi -> and Decays
The system in decays of is limited to be
isospin 1/2 by isospin conservation. This provides a big advantage in studying
compared with and experiments which mix
isospin 1/2 and 3/2 for the system. Using 58 million decays
collected with the Beijing Electron Positron Collider, more than 100 thousand
events are obtained. Besides two well known
peaks at 1500 MeV and 1670 MeV, there are two new, clear peaks in
the invariant mass spectrum around 1360 MeV and 2030 MeV. They are the
first direct observation of the peak and a long-sought "missing"
peak above 2 GeV in the invariant mass spectrum. A simple
Breit-Wigner fit gives the mass and width for the peak as MeV and MeV, and for the new peak above 2 GeV
as MeV and MeV, respectively
Charm multiplicity and the branching ratios of inclusive charmless b quark decays in the general two-Higgs-doublet models
In the framework of general two-Higgs-doublet models, we calculate the
branching ratios of various inclusive charmless b decays by using the low
energy effective Hamiltonian including next-to-leading order QCD corrections,
and examine the current status and the new physics effects on the determination
of the charm multiplicity and semileptonic branching ratio .
Within the considered parameter space, the enhancement to the ratio due to the charged-Higgs penguins can be as large as a factor of 8 (3) in
the model III (II), while the ratio can be increased from
the standard model prediction of 2.49% to 4.91% (2.99%) in the model III (II).
Consequently, the value of and can be decreased simultaneously
in the model III. The central value of will be lowered slightly by
about 0.003, but the ratio can be reduced significantly from the
theoretical prediction of in the SM to , for GeV, respectively. We find that
the predicted and the measured now agree within roughly one
standard deviation after taking into account the effects of gluonic charged
Higgs penguins in the model III with a relatively light charged Higgs boson.Comment: 25 pages, Latex file, axodraw.sty, 6 figures. Final version to be
published in Phys.Rev.
The Vacuum System of HIRFL
AbstractThe vacuum system of Heavy Ion Research Facility in Lanzhou (HIRFL) is a large and complex system. HIRFL consists of two ECR ion sources, a sector focus cyclotron (SFC), a separate sector cyclotron (SSC) and a multi-purpose cooling storage ring system which has a main ring (CSRm) and an experiment ring (CSRe). Several beam lines connect these accelerators together and transfer various heavy ion beams to more than 10 experiment terminals. According to the requirements of the ion acceleration and ion lifetime, the working pressure in each accelerator is different. SFC is nearly 50 years old. After upgrade, the working pressure in SFC is improved from 10-6mbar to 10-8mbar. The pressure in SSC which was built in the 1980s reaches the same level. The cooling storage ring system with a length of 500m came into operation in 2007. The average pressures in CSRm and CSRe are 5×10-12mbar and 8×10-12mbar respectively. Different designs were adopt for vacuum system of a dozen beam lines to meet specific requirement of each experiment terminal. Along with the extensive development of the heavy ion researches and applications, new accelerators of HIRFL are under construction. The vacuum system of the new machines will be designed and constructed followed the overall schedule
Measurements of the Mass and Full-Width of the Meson
In a sample of 58 million events collected with the BES II detector,
the process J/ is observed in five different decay
channels: , , (with ), (with
) and . From a combined fit of all five
channels, we determine the mass and full-width of to be
MeV/ and
MeV/.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.
- …