45,658 research outputs found
Measurement-induced nonlocality over two-sided projective measurements
Measurement-induced nonlocality (MiN), introduced by Luo and Fu [Phys. Rev.
Lett. 106(2011)120401], is a kind of quantum correlation that beyond
entanglement and even beyond quantum discord. Recently, we extended MiN to
infinite-dimensional bipartite system [arXiv:1107.0355]. MiN is defined over
one-sided projective measurements. In this letter we introduce a
measurement-induced nonlocality over two-sided projective measurements. The
nullity of this two-sided MiN is characterized, a formula for calculating
two-sided MiN for pure states is proposed, and a lower bound of (two-sided) MiN
for maximally entangled mixed states is given. In addition, we find that
(two-sided) MiN is not continuous. The two-sided geometric measure of quantum
discord (GMQD) is introduced in [Phys. Lett. A 376(2012)320--324]. We extend it
to infinite-dimensional system and then compare it with the two-sided MiN. Both
finite- and infinite-dimensional cases are considered.Comment: 12 page
A sharp stability criterion for the Vlasov-Maxwell system
We consider the linear stability problem for a 3D cylindrically symmetric
equilibrium of the relativistic Vlasov-Maxwell system that describes a
collisionless plasma. For an equilibrium whose distribution function decreases
monotonically with the particle energy, we obtained a linear stability
criterion in our previous paper. Here we prove that this criterion is sharp;
that is, there would otherwise be an exponentially growing solution to the
linearized system. Therefore for the class of symmetric Vlasov-Maxwell
equilibria, we establish an energy principle for linear stability. We also
treat the considerably simpler periodic 1.5D case. The new formulation
introduced here is applicable as well to the nonrelativistic case, to other
symmetries, and to general equilibria
Projection Measurement of the Maximally Entangled N-Photon State for a Demonstration of N-Photon de Broglie Wavelength
We construct a projection measurement process for the maximally entangled
N-photon state (the NOON-state) with only linear optical elements and
photodetectors. This measurement process will give null result for any N-photon
state that is orthogonal to the NOON state. We examine the projection process
in more detail for N=4 by applying it to a four-photon state from type-II
parametric down-conversion. This demonstrates an orthogonal projection
measurement with a null result. This null result corresponds to a dip in a
generalized Hong-Ou-Mandel interferometer for four photons. We find that the
depth of the dip in this arrangement can be used to distinguish a genuine
entangled four-photon state from two separate pairs of photons. We next apply
the NOON state projection measurement to a four-photon superposition state from
two perpendicularly oriented type-I parametric down-conversion processes. A
successful NOON state projection is demonstrated with the appearance of the
four-photon de Broglie wavelength in the interference fringe pattern.Comment: 8 pages, 3 figures, new title, some content change, replaced Fig.
Top-N Recommendation on Graphs
Recommender systems play an increasingly important role in online
applications to help users find what they need or prefer. Collaborative
filtering algorithms that generate predictions by analyzing the user-item
rating matrix perform poorly when the matrix is sparse. To alleviate this
problem, this paper proposes a simple recommendation algorithm that fully
exploits the similarity information among users and items and intrinsic
structural information of the user-item matrix. The proposed method constructs
a new representation which preserves affinity and structure information in the
user-item rating matrix and then performs recommendation task. To capture
proximity information about users and items, two graphs are constructed.
Manifold learning idea is used to constrain the new representation to be smooth
on these graphs, so as to enforce users and item proximities. Our model is
formulated as a convex optimization problem, for which we need to solve the
well-known Sylvester equation only. We carry out extensive empirical
evaluations on six benchmark datasets to show the effectiveness of this
approach.Comment: CIKM 201
Detection of promoter hypermethylation of the CpG island of E-cadherin in gastric cardiac adenocarcinoma
<p>Abstract</p> <p>Aim</p> <p>Abnormal hypermethylation of CpG islands associated with tumor suppressor genes can lead to transcriptional silencing in neoplasia. The aim of this study was to investigate the promoter methylation and expression of E-cadherin gene in gastric cardiac adenocarcinoma (GCA).</p> <p>Methods</p> <p>A nested MSP approach, immunohistochemistry method and RT-PCR were used respectively to examine the methylation status of the 5' CpG island of E-cadherin, its protein expression and mRNA expression in tumors and corresponding normal tissues.</p> <p>Results</p> <p>E-cadherin was methylated in 63 of 92 (68.5%) tumor specimens, which was significantly higher than that in corresponding normal tissues (P < 0.001). Methylation frequencies of stage III and IV tumor tissues was significantly higher than that in stage I and II tumor tissues (P = 0.01). Methylation status of poor differentiation group was significantly higher than moderate and poor-moderate differentiation groups (P < 0.01). By immunostaining 51 of 92 tumor tisssues demonstrated heterogeneous, positive immunostaining of tumor tissues (44.6%), significantly different from matched normal tissues (P < 0.001). Positive immunostaining of stage III and IV tumor tissues was significantly lower than stage I and II tumor tissues (P < 0.01). Poor differentiation group was also significantly lower than moderate and poor-moderate differentiation groups (P < 0.05). 80 percent of tumor tissues with E-cadherin gene methylated showed inactivated mRNA expression.</p> <p>Conclusions</p> <p>High methylation status of the 5' CpG island of E-cadherin gene may be one of the mechanisms in the development of gastric cardiac adenocarcinoma.</p
Conditions for Nondistortion Interrogation of Quantum System
Under some physical considerations, we present a universal formulation to
study the possibility of localizing a quantum object in a given region without
disturbing its unknown internal state. When the interaction between the object
and probe wave function takes place only once, we prove the necessary and
sufficient condition that the object's presence can be detected in an initial
state preserving way. Meanwhile, a conditioned optimal interrogation
probability is obtained.Comment: 5 pages, Revtex, 1 figures, Presentation improved, corollary 1 added.
To appear in Europhysics Letter
Multiple Superconducting Gaps, Anisotropic Spin Fluctuations and Spin-Orbit Coupling in Iron-Pnictides
This article reviews the NMR and NQR studies on iron-based high-temperature
superconductors by the IOP/Okayama group. It was found that the electron pairs
in the superconducting state are in the spin-singlet state with multiple
fully-opened energy gaps. The antiferromagnetic spin fluctuations in the normal
state are found to be closely correlated with the superconductivity. Also the
antiferromagnetic spin fluctuations are anisotropic in the spin space, which is
different from the case in copper oxide superconductors. This anisotropy
originates from the spin-orbit coupling and is an important reflection of the
multiple-bands nature of this new class of superconductors.Comment: 20 pages, 16 figure
- …