903 research outputs found
Measurement of proton electromagnetic form factors in in the energy region 2.00-3.08 GeV
The process of is studied at 22 center-of-mass
energy points () from 2.00 to 3.08 GeV, exploiting 688.5~pb of
data collected with the BESIII detector operating at the BEPCII collider. The
Born cross section~() of is
measured with the energy-scan technique and it is found to be consistent with
previously published data, but with much improved accuracy. In addition, the
electromagnetic form-factor ratio () and the value of the
effective (), electric () and magnetic () form
factors are measured by studying the helicity angle of the proton at 16
center-of-mass energy points. and are determined with
high accuracy, providing uncertainties comparable to data in the space-like
region, and is measured for the first time. We reach unprecedented
accuracy, and precision results in the time-like region provide information to
improve our understanding of the proton inner structure and to test theoretical
models which depend on non-perturbative Quantum Chromodynamics
Search for the decay
We search for radiative decays into a weakly interacting neutral
particle, namely an invisible particle, using the produced through the
process in a data sample of
decays collected by the BESIII detector
at BEPCII. No significant signal is observed. Using a modified frequentist
method, upper limits on the branching fractions are set under different
assumptions of invisible particle masses up to 1.2 . The upper limit corresponding to an invisible particle with zero mass
is 7.0 at the 90\% confidence level
Measurements of Weak Decay Asymmetries of , , , and
Using production from a 567 pb
data sample collected by BESIII at 4.6 GeV, a full angular analysis is carried
out simultaneously on the four decay modes of , , , and . For the first time, the
transverse polarization is studied in unpolarized
collisions, where a non-zero effect is observed with a statistical significance
of 2.1. The decay asymmetry parameters of the weak
hadronic decays into , , and
are measured to be ,
,
, and
, respectively. In comparison with
previous results, the measurements for the and
modes are consistent but with improved precision, while the parameters for the
and modes are measured for the first time
First observations of hadrons
Based on events collected with
the BESIII detector, five hadronic decays are searched for via process
. Three of them, ,
, and are observed for the first
time, with statistical significances of 7.4, , and
9.1, and branching fractions of ,
, and ,
respectively, where the first uncertainties are statistical and the second
systematic. No significant signal is observed for the other two decay modes,
and the corresponding upper limits of the branching fractions are determined to
be and at 90% confidence level.Comment: 17 pages, 16 figure
A side-by-side comparison of Daya Bay antineutrino detectors
The Daya Bay Reactor Neutrino Experiment is designed to determine precisely
the neutrino mixing angle with a sensitivity better than 0.01 in
the parameter sin at the 90% confidence level. To achieve this
goal, the collaboration will build eight functionally identical antineutrino
detectors. The first two detectors have been constructed, installed and
commissioned in Experimental Hall 1, with steady data-taking beginning
September 23, 2011. A comparison of the data collected over the subsequent
three months indicates that the detectors are functionally identical, and that
detector-related systematic uncertainties exceed requirements.Comment: 24 pages, 36 figure
New measurement of via neutron capture on hydrogen at Daya Bay
This article reports an improved independent measurement of neutrino mixing
angle at the Daya Bay Reactor Neutrino Experiment. Electron
antineutrinos were identified by inverse -decays with the emitted
neutron captured by hydrogen, yielding a data-set with principally distinct
uncertainties from that with neutrons captured by gadolinium. With the final
two of eight antineutrino detectors installed, this study used 621 days of data
including the previously reported 217-day data set with six detectors. The
dominant statistical uncertainty was reduced by 49%. Intensive studies of the
cosmogenic muon-induced Li and fast neutron backgrounds and the
neutron-capture energy selection efficiency, resulted in a reduction of the
systematic uncertainty by 26%. The deficit in the detected number of
antineutrinos at the far detectors relative to the expected number based on the
near detectors yielded in the
three-neutrino-oscillation framework. The combination of this result with the
gadolinium-capture result is also reported.Comment: 26 pages, 23 figure
Precise Measurements of Branching Fractions for Meson Decays to Two Pseudoscalar Mesons
We measure the branching fractions for seven two-body decays to
pseudo-scalar mesons, by analyzing data collected at
GeV with the BESIII detector at the BEPCII collider. The branching fractions
are determined to be ,
,
,
,
,
,
,
where the first uncertainties are statistical, the second are systematic, and
the third are from external input branching fraction of the normalization mode
. Precision of our measurements is significantly improved
compared with that of the current world average values
Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay
A new measurement of the reactor antineutrino flux and energy spectrum by the
Daya Bay reactor neutrino experiment is reported. The antineutrinos were
generated by six 2.9~GW nuclear reactors and detected by eight
antineutrino detectors deployed in two near (560~m and 600~m flux-weighted
baselines) and one far (1640~m flux-weighted baseline) underground experimental
halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD)
candidates were detected. The IBD yield in the eight detectors was measured,
and the ratio of measured to predicted flux was found to be
() for the Huber+Mueller (ILL+Vogel) model. A 2.9~
deviation was found in the measured IBD positron energy spectrum compared to
the predictions. In particular, an excess of events in the region of 4-6~MeV
was found in the measured spectrum, with a local significance of 4.4~.
A reactor antineutrino spectrum weighted by the IBD cross section is extracted
for model-independent predictions.Comment: version published in Chinese Physics
Observation of electron-antineutrino disappearance at Daya Bay
The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for
the neutrino mixing angle with a significance of 5.2 standard
deviations. Antineutrinos from six 2.9 GW reactors were detected in
six antineutrino detectors deployed in two near (flux-weighted baseline 470 m
and 576 m) and one far (1648 m) underground experimental halls. With a 43,000
ton-GW_{\rm th}-day livetime exposure in 55 days, 10416 (80376) electron
antineutrino candidates were detected at the far hall (near halls). The ratio
of the observed to expected number of antineutrinos at the far hall is
. A rate-only analysis
finds in a
three-neutrino framework.Comment: 5 figures. Version to appear in Phys. Rev. Let
- …