1,941 research outputs found

    Neutrino Masses, Lepton Flavor Mixing and Leptogenesis in the Minimal Seesaw Model

    Full text link
    We present a review of neutrino phenomenology in the minimal seesaw model (MSM), an economical and intriguing extension of the Standard Model with only two heavy right-handed Majorana neutrinos. Given current neutrino oscillation data, the MSM can predict the neutrino mass spectrum and constrain the effective masses of the tritium beta decay and the neutrinoless double-beta decay. We outline five distinct schemes to parameterize the neutrino Yukawa-coupling matrix of the MSM. The lepton flavor mixing and baryogenesis via leptogenesis are investigated in some detail by taking account of possible texture zeros of the Dirac neutrino mass matrix. We derive an upper bound on the CP-violating asymmetry in the decay of the lighter right-handed Majorana neutrino. The effects of the renormalization-group evolution on the neutrino mixing parameters are analyzed, and the correlation between the CP-violating phenomena at low and high energies is highlighted. We show that the observed matter-antimatter asymmetry of the Universe can naturally be interpreted through the resonant leptogenesis mechanism at the TeV scale. The lepton-flavor-violating rare decays, such as μe+γ\mu \to e + \gamma, are also discussed in the supersymmetric extension of the MSM.Comment: 50 pages, 22 EPS figures, macro file ws-ijmpe.cls included, accepted for publication in Int. J. Mod. Phys.

    Exploring the parameter space of texture 4 zero quark mass matrices

    Full text link
    We have attempted to extend the parameter space of the elements of the texture 4 zero Hermitian quark mass matrices, to include the case of `weak hierarchy' amongst them along with the usually considered `strong hierarchy' case. This has been carried out by giving wide variation to the hierarchy defining parameters D_U and D_D, having implications for the structural features of the mass matrices. We find that not only the weakly hierarchical mass matrices are able to reproduce the strongly hierarchical mixing angles but also both the phases having their origin in the mass matrices have to be non zero to achieve compatibility of these matrices with recent quark mixing data. Further noting the difference between the exclusive and inclusive values of V_ub, we have carried out separate analyses corresponding to these.Comment: 13 pages, 4 figures, version accepted for publication in Journal Of Physics

    Flavor Mixing and CP Violation of Massive Neutrinos

    Full text link
    We present an overview of recent progress in the phenomenological study of neutrino masses, lepton flavor mixing and CP violation. We concentrate on the model-independent properties of massive neutrinos, both in vacuum and in matter. Current experimental constraints on the neutrino mass spectrum and the lepton flavor mixing parameters are summarized. The Dirac- and Majorana-like phases of CP violation, which are associated respectively with the long-baseline neutrino oscillations and the neutrinoless double beta decay, are discussed in detail. The seesaw mechanism, the leptogenesis scenario and the strategies to construct lepton mass matrices are briefly described. The features of flavor mixing between one sterile neutrino and three active neutrinos are also explored.Comment: Invited review. LaTex 76 pages (14 PS figures included

    Two-zero Textures of the Majorana Neutrino Mass Matrix and Current Experimental Tests

    Full text link
    In view of the latest T2K and MINOS neutrino oscillation data which hint at a relatively large theta_13, we perform a systematic study of the Majorana neutrino mass matrix M_nu with two independent texture zeros. We show that three neutrino masses (m_1, m_2, m_3) and three CP-violating phases (delta, rho, sigma) can fully be determined from two neutrino mass-squared differences (delta m^2, Delta m^2) and three flavor mixing angles (theta_12, theta_23, theta_13). We find that seven patterns of M_nu (i.e., A_{1,2}, B_{1,2,3,4} and C) are compatible with current experimental data at the 3-sigma level, but the parameter space of each pattern is more strictly constrained than before. We demonstrate that the texture zeros of M_nu are stable against the one-loop quantum corrections, and there exists a permutation symmetry between Patterns A_1 and A_2, B_1 and B_2 or B_3 and B_4. Phenomenological implications of M_nu on the neutrinoless double-beta decay and leptonic CP violation are discussed, and a realization of those texture zeros by means of the Z_n flavor symmetries is illustrated.Comment: 41 pages, including 4 tables and 14 figures, more discussions added, to appear in JHE

    Prediction of Ue3U_{e3} in Neutrino Mass Matrix with Two Zeros

    Full text link
    We have discussed predictions of Ue3|U_{e3}| and JCPJ_{CP} in the framework of the neutrino mass matrix with two zeros. In the case of the best fit values of tan2θ12\tan^2\theta_{12}, tan2θ23\tan^2\theta_{23}, Δmsun2\Delta m^2_{\rm sun} and Δmatm2\Delta m_{\rm atm}^2, the prediction of Ue3|U_{e3}| is 0.110.140.11\sim 0.14. The lower bound of Ue3|U_{e3}| is 0.05, which depends on tanθ12\tan\theta_{12} and tanθ23\tan\theta_{23}. We have investigated the stability of these predictions taking account of small corrections to zeros, which may come from radiative corrections or off-diagonal elements of the charged lepton massmatrix. The lower bound of Ue3|U_{e3}| comes down considerably due to the small corrections to zeros.Comment: Figures and discussions are adde

    New measurement of θ13\theta_{13} via neutron capture on hydrogen at Daya Bay

    Full text link
    This article reports an improved independent measurement of neutrino mixing angle θ13\theta_{13} at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse β\beta-decays with the emitted neutron captured by hydrogen, yielding a data-set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. The dominant statistical uncertainty was reduced by 49%. Intensive studies of the cosmogenic muon-induced 9^9Li and fast neutron backgrounds and the neutron-capture energy selection efficiency, resulted in a reduction of the systematic uncertainty by 26%. The deficit in the detected number of antineutrinos at the far detectors relative to the expected number based on the near detectors yielded sin22θ13=0.071±0.011\sin^22\theta_{13} = 0.071 \pm 0.011 in the three-neutrino-oscillation framework. The combination of this result with the gadolinium-capture result is also reported.Comment: 26 pages, 23 figure

    Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    Full text link
    A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9~GWth_{\mathrm{th}} nuclear reactors and detected by eight antineutrino detectors deployed in two near (560~m and 600~m flux-weighted baselines) and one far (1640~m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.0200.946\pm0.020 (0.992±0.0210.992\pm0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9~σ\sigma deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6~MeV was found in the measured spectrum, with a local significance of 4.4~σ\sigma. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.Comment: version published in Chinese Physics
    corecore