5,682 research outputs found

    Tetra­kis[μ-2-(3,4-dimeth­oxy­phen­yl)acetato]-κ3 O 1,O 1′:O 1;κ3 O 1:O 1,O 1′;κ4 O 1:O 1′-bis­{[2-(3,4-dimeth­oxy­phen­yl)acetato-κ2 O 1,O 1′](1,10-phenanthroline-κ2 N,N′)erbium(III)}

    Get PDF
    In the dimeric centrosymmetric title complex, [Er2(C10H11O4)6(C12H8N2)2], the ErIII ion is nine-coordinated by five 2-(3,4-dimeth­oxy­lphen­yl)acetic acid (DMPA) ligands via seven O atoms and two N atoms from a bis-chelating 1,10-phenanthroline (phen) ligand in a distorted tricapped trigonal-prismatic geometry. The DMPA ligands are coordinated to the ErIII ion in bis-chelate, bridging and bridging tridentate modes. Relatively weak intra­molecular C—H⋯O inter­actions reinforce the stability of the mol­ecular structure. Inter­molecular C—H⋯O inter­actions are also observed

    Tetra­kis[μ-2-(3,4-dimeth­oxy­phen­yl)acetato]-κ4 O:O′;κ3 O,O′:O;κ3 O:O,O′-bis­{[2-(3,4-dimeth­oxy­phen­yl)acetato-κ2 O,O′](1,10-phenanthroline-κ2 N,N′)samarium(III)}

    Get PDF
    In the centrosymmetric dinuclear title complex, [Sm2(C10H11O4)6(C12H8N2)2], the SmIII ion is nine-coordinated by seven O atoms of five 2-(3,4-dimeth­oxy­phen­yl)acetate (DMPA) ligands and two N atoms of one bis-chelating 1,10-phenanthroline (phen) ligand, forming a distorted tricapped trigonal-prismatic environment. The DMPA ligands coordinate in bis-chelate, bridging and bridging tridentate modes. An intra­molecular C—H⋯O hydrogen bond occurs. Inter­molecular C—H⋯O inter­actions are also present in the crystal

    Combined experimental-theoretical study of the OH + CO → H + CO2 reaction dynamics

    Get PDF
    A combined experimental−theoretical study is performed to advance our understanding of the dynamics of the prototypical tetra-atom, complex-forming reaction OH + CO → H + CO 2, which is also of great practical relevance in combustion, Earth’s atmosphere, and, potentially, Mars’s atmosphere and interstellar chemistry. New crossed molecular beam experiments with mass spectrometric detection are analyzed together with the results from previous experiments and compared with quasi-classical trajectory (QCT) calculations on a new, fulldimensional potential energy surface (PES). Comparisons between experiment and theory are carried out both in the center-of-mass and laboratory frames. Good agreement is found between experiment and theory, both for product angular and translational energy distributions, leading to the conclusion that the new PES is the most accurate at present in elucidating the dynamics of this fundamental reaction. Yet, small deviations between experiment and theory remain and are presumably attributable to the QCT treatment of the scattering dynamics
    corecore