266 research outputs found

    ResiDualGAN: Resize-Residual DualGAN for Cross-Domain Remote Sensing Images Semantic Segmentation

    Full text link
    The performance of a semantic segmentation model for remote sensing (RS) images pretrained on an annotated dataset would greatly decrease when testing on another unannotated dataset because of the domain gap. Adversarial generative methods, e.g., DualGAN, are utilized for unpaired image-to-image translation to minimize the pixel-level domain gap, which is one of the common approaches for unsupervised domain adaptation (UDA). However, the existing image translation methods are facing two problems when performing RS images translation: 1) ignoring the scale discrepancy between two RS datasets which greatly affects the accuracy performance of scale-invariant objects, 2) ignoring the characteristic of real-to-real translation of RS images which brings an unstable factor for the training of the models. In this paper, ResiDualGAN is proposed for RS images translation, where an in-network resizer module is used for addressing the scale discrepancy of RS datasets, and a residual connection is used for strengthening the stability of real-to-real images translation and improving the performance in cross-domain semantic segmentation tasks. Combined with an output space adaptation method, the proposed method greatly improves the accuracy performance on common benchmarks, which demonstrates the superiority and reliability of ResiDuanGAN. At the end of the paper, a thorough discussion is also conducted to give a reasonable explanation for the improvement of ResiDualGAN. Our source code is available at https://github.com/miemieyanga/ResiDualGAN-DRDG

    Crocs: Cross-Technology Clock Synchronization for WiFi and ZigBee

    Full text link
    Clock synchronization is a key function in embedded wireless systems and networks. This issue is equally important and more challenging in IoT systems nowadays, which often include heterogeneous wireless devices that follow different wireless standards. Conventional solutions to this problem employ gateway-based indirect synchronization, which suffers low accuracy. This paper for the first time studies the problem of cross-technology clock synchronization. Our proposal called Crocs synchronizes WiFi and ZigBee devices by direct cross-technology communication. Crocs decouples the synchronization signal from the transmission of a timestamp. By incorporating a barker-code based beacon for time alignment and cross-technology transmission of timestamps, Crocs achieves robust and accurate synchronization among WiFi and ZigBee devices, with the synchronization error lower than 1 millisecond. We further make attempts to implement different cross-technology communication methods in Crocs and provide insight findings with regard to the achievable accuracy and expected overhead

    Federated Learning Incentive Mechanism under Buyers' Auction Market

    Full text link
    Auction-based Federated Learning (AFL) enables open collaboration among self-interested data consumers and data owners. Existing AFL approaches are commonly under the assumption of sellers' market in that the service clients as sellers are treated as scarce resources so that the aggregation servers as buyers need to compete the bids. Yet, as the technology progresses, an increasing number of qualified clients are now capable of performing federated learning tasks, leading to shift from sellers' market to a buyers' market. In this paper, we shift the angle by adapting the procurement auction framework, aiming to explain the pricing behavior under buyers' market. Our modeling starts with basic setting under complete information, then move further to the scenario where sellers' information are not fully observable. In order to select clients with high reliability and data quality, and to prevent from external attacks, we utilize a blockchain-based reputation mechanism. The experimental results validate the effectiveness of our approach

    RF-Transformer: A Unified Backscatter Radio Hardware Abstraction

    Full text link
    This paper presents RF-Transformer, a unified backscatter radio hardware abstraction that allows a low-power IoT device to directly communicate with heterogeneous wireless receivers at the minimum power consumption. Unlike existing backscatter systems that are tailored to a specific wireless communication protocol, RF-Transformer provides a programmable interface to the micro-controller, allowing IoT devices to synthesize different types of protocol-compliant backscatter signals sharing radically different PHY-layer designs. To show the efficacy of our design, we implement a PCB prototype of RF-Transformer on 2.4 GHz ISM band and showcase its capability on generating standard ZigBee, Bluetooth, LoRa, and Wi-Fi 802.11b/g/n/ac packets. Our extensive field studies show that RF-Transformer achieves 23.8 Mbps, 247.1 Kbps, 986.5 Kbps, and 27.3 Kbps throughput when generating standard Wi-Fi, ZigBee, Bluetooth, and LoRa signals while consuming 7.6-74.2 less power than their active counterparts. Our ASIC simulation based on the 65-nm CMOS process shows that the power gain of RF-Transformer can further grow to 92-678. We further integrate RF-Transformer with pressure sensors and present a case study on detecting foot traffic density in hallways. Our 7-day case studies demonstrate RFTransformer can reliably transmit sensor data to a commodity gateway by synthesizing LoRa packets on top of Wi-Fi signals. Our experimental results also verify the compatibility of RF-Transformer with commodity receivers. Code and hardware schematics can be found at: https://github.com/LeFsCC/RF-Transformer

    High-efficient screening method for identification of key genes in breast cancer through microarray and bioinformatics

    Get PDF
    Background/Aim: The aim of the present study was to identify key pathways and genes in breast cancer and develop a new method for screening key genes with abnormal expression based on bioinformatics. Materials and Methods: Three microarray datasets GSE21422, GSE42568 and GSE45827 were downloaded from the Gene Expression Omnibus (GEO) database and differentially expressed genes (DEGs) were analyzed using GEO2R. The gene ontology (GO) and pathway enrichment analysis were established through DAVID database. The protein–protein interaction (PPI) network was performed through the Search Tool for the Retrieval of Interacting Genes (STRING) database and managed by Cytoscape. The overall survival (OS) analysis of the 4 genes including AURKA, CDH1, CDK1 and PPARG that had higher degrees in this network was uncovered Kaplan-Meier analysis. Results: A total of 811 DEGs were identified in breast cancer, which were enriched in biological processes, including cell cycle, mitosis, vessel development and lipid metabolic. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the up-regulated DEGs were particularly involved in cell cycle, progesterone-mediated oocyte maturation and leukocyte transendothelial migration, while the down-regulated DEGs were mainly involved in regulation of lipolysis, fatty acid degradation and glycerolipid metabolism. Through PPI network analysis, 14 hub genes were identified. Among them, the high expression of AURKA, CDH1 and CDK1 were associated with worse OS of breast cancer patients; while the high expression of PPARG was linked with better OS. Conclusion: The present study identified key pathways and genes involved in breast cancer which are potential molecular targets for breast cancer treatment and diagnosis

    MusiLingo: Bridging Music and Text with Pre-trained Language Models for Music Captioning and Query Response

    Full text link
    Large Language Models (LLMs) have shown immense potential in multimodal applications, yet the convergence of textual and musical domains remains relatively unexplored. To address this gap, we present MusiLingo, a novel system for music caption generation and music-related query responses. MusiLingo employs a single projection layer to align music representations from the pre-trained frozen music audio model MERT with the frozen LLaMA language model, bridging the gap between music audio and textual contexts. We train it on an extensive music caption dataset and fine-tune it with instructional data. Due to the scarcity of high-quality music Q&A datasets, we created the MusicInstruct (MI) dataset from MusicCaps, tailored for open-ended music inquiries. Empirical evaluations demonstrate its competitive performance in generating music captions and composing music-related Q&A pairs. Our introduced dataset enables notable advancements beyond previous ones

    Measuring Online Emotional Reactions to Offline Events

    Full text link
    The rich and dynamic information environment on social media provides researchers, policy makers, and entrepreneurs with opportunities to learn about social phenomena in a timely manner. However, using this data to understand human affect and behavior poses multiple challenges, such as heterogeneity of topics and events discussed in the highly dynamic online information environment. To address these challenges, we present a methodology for systematically detecting and measuring emotional reactions to offline events using change point detection on the time series of collective affect, and further explaining these reactions using a transformer-based topic model. We demonstrate the utility of the methodology on a corpus of tweets collected from a large US metropolitan area between January and August, 2020, covering a period of great social change, including the COVID-19 pandemic and racial justice protests. We demonstrate that our method is able to disaggregate topics to measure population's emotional and moral reactions to events. This capability allows for better monitoring of population's reactions to offline events using online data
    • …
    corecore