263 research outputs found

    Integrating Semantic Knowledge to Tackle Zero-shot Text Classification

    Get PDF
    Insufficient or even unavailable training data of emerging classes is a big challenge of many classification tasks, including text classification. Recognising text documents of classes that have never been seen in the learning stage, so-called zero-shot text classification, is therefore difficult and only limited previous works tackled this problem. In this paper, we propose a two-phase framework together with data augmentation and feature augmentation to solve this problem. Four kinds of semantic knowledge (word embeddings, class descriptions, class hierarchy, and a general knowledge graph) are incorporated into the proposed framework to deal with instances of unseen classes effectively. Experimental results show that each and the combination of the two phases achieve the best overall accuracy compared with baselines and recent approaches in classifying real-world texts under the zero-shot scenario.Comment: Accepted NAACL-HLT 201

    Semantic Image Synthesis via Adversarial Learning

    Full text link
    In this paper, we propose a way of synthesizing realistic images directly with natural language description, which has many useful applications, e.g. intelligent image manipulation. We attempt to accomplish such synthesis: given a source image and a target text description, our model synthesizes images to meet two requirements: 1) being realistic while matching the target text description; 2) maintaining other image features that are irrelevant to the text description. The model should be able to disentangle the semantic information from the two modalities (image and text), and generate new images from the combined semantics. To achieve this, we proposed an end-to-end neural architecture that leverages adversarial learning to automatically learn implicit loss functions, which are optimized to fulfill the aforementioned two requirements. We have evaluated our model by conducting experiments on Caltech-200 bird dataset and Oxford-102 flower dataset, and have demonstrated that our model is capable of synthesizing realistic images that match the given descriptions, while still maintain other features of original images.Comment: Accepted to ICCV 201

    A Dual-Masked Auto-Encoder for Robust Motion Capture with Spatial-Temporal Skeletal Token Completion

    Full text link
    Multi-person motion capture can be challenging due to ambiguities caused by severe occlusion, fast body movement, and complex interactions. Existing frameworks build on 2D pose estimations and triangulate to 3D coordinates via reasoning the appearance, trajectory, and geometric consistencies among multi-camera observations. However, 2D joint detection is usually incomplete and with wrong identity assignments due to limited observation angle, which leads to noisy 3D triangulation results. To overcome this issue, we propose to explore the short-range autoregressive characteristics of skeletal motion using transformer. First, we propose an adaptive, identity-aware triangulation module to reconstruct 3D joints and identify the missing joints for each identity. To generate complete 3D skeletal motion, we then propose a Dual-Masked Auto-Encoder (D-MAE) which encodes the joint status with both skeletal-structural and temporal position encoding for trajectory completion. D-MAE's flexible masking and encoding mechanism enable arbitrary skeleton definitions to be conveniently deployed under the same framework. In order to demonstrate the proposed model's capability in dealing with severe data loss scenarios, we contribute a high-accuracy and challenging motion capture dataset of multi-person interactions with severe occlusion. Evaluations on both benchmark and our new dataset demonstrate the efficiency of our proposed model, as well as its advantage against the other state-of-the-art methods
    • …
    corecore