212 research outputs found

    Illegal Intrusion Detection of Internet of Things Based on Deep Mining Algorithm

    Get PDF
    In this study, to reduce the influence of The Internet of Things (IoT) illegal intrusion on the transmission effect, and ensure IoT safe operation, an illegal intrusion detection method of the Internet of Things (IoT) based on deep mining algorithm was designed to accurately detect IoT illegal intrusion. Moreover, this study collected the data in the IoT through data packets and carries out data attribute mapping on the collected data, transformed the character information into numerical information, implemented standardization and normalization processing on the numerical information, and optimized the processed data by using a regional adaptive oversampling algorithm to obtain an IoT data training set. The IoT data training set was taken as the input data of the improved sparse auto-encoder neural network. The hierarchical greedy training strategy was used to extract the feature vector of the sparse IoT illegal intrusion data that were used as the inputs of the extreme learning machine classifier to realize the classification and detection of the IoT illegal intrusion features. The experimental results indicate that the feature extraction of the illegal intrusion data of the IoT can effectively reduce the feature dimension of the illegal intrusion data of the IoT to less than 30 and the dimension of the original data. The recall rate, precision, and F1 value of the IoT intrusion detection are 98.3%, 98.7%, and 98.6%, respectively, which can accurately detect IoT intrusion attacks. The conclusion demonstrates that the intrusion detection of IoT based on deep mining algorithm can achieve accurate detection of IoT illegal intrusion and reduce the influence of IoT illegal intrusion on the transmission effect

    Effect of Freeze-Thaw Cycles on the Internal Structure and Performance of Semirigid Base Materials

    Get PDF
    In this study, we investigate the spatial distributions of the internal structures in semirigid base materials (SRBMs) and explore their effect on the service performance of the SRBMs. X-ray computed tomography (X-ray CT) was used to conduct a spatial voids structure analysis. Three variates were selected to study the factors influencing the spatial distributions of the internal structures, including freeze-thaw cycles, curing time, and cement content. The results show that, with the increase in the number of freezing and thawing cycles, the average porosity, void area, and void number of the SRBM samples increased, and the average void diameters of all samples initially increased and then decreased. These trends led to an increase in the mass loss ratio and strength loss ratio. Increasing the cement content and extending the curing time decreased the average number of voids, average void area, and average void diameter and decreased the mass loss ratio and strength loss ratio of the SRBMs. The top and bottom of the SRBM samples were more porous than the middle of the samples, whereas the maximum value of the average void diameter was observed in the middle of the samples

    Bearing capacity and seismic performance of Y-shaped reinforced concrete bridge piers in a freeze-thaw environment

    Get PDF
    A quantitative study is performed to determine the performance degradation of Y-shaped reinforced concrete bridge piers owing to long-term freeze-thaw damage. The piers are discretized into spatial solid elements using the ANSYS Workbench finite element analysis software, and a spatial model is established. The analysis addresses the mechanical performance of the piers under monotonic loading, and their seismic performance under low-cycle repeated loading. The influence of the number of freeze-thaw cycles, axial compression ratio, and loading direction on the pier bearing capacity index and seismic performance index is investigated. The results show that freeze-thaw damage has an adverse effect on the ultimate bearing capacity and seismic performance of Y-shaped bridge piers in the transverse and longitudinal directions. The pier peak load and displacement ductility coefficient decrease with increasing number of freeze-thaw cycles. The axial compression ratio is an important factor that affects the pier ultimate bearing capacity and seismic performance. Upon increasing the axial compression ratio, the pier peak load increases and the displacement ductility coefficient decreases, the effects of which are more significant in the longitudinal direction

    Endogenous Type I-C CRISPR-Cas system of Streptococcus equi subsp. zooepidemicus promotes biofilm formation and pathogenicity

    Get PDF
    Streptococcus equi subsp. zooepidemicus (SEZ) is a significant zoonotic pathogen that causes septicemia, meningitis, and mastitis in domestic animals. Recent reports have highlighted high-mortality outbreaks among swine in the United States. Traditionally recognized for its adaptive immune functions, the CRISPR-Cas system has also been implicated in gene regulation, bacterial pathophysiology, virulence, and evolution. The Type I-C CRISPR-Cas system, which is prevalent in SEZ isolates, appears to play a pivotal role in regulating the pathogenicity of SEZ. By constructing a Cas3 mutant strain (ΔCas3) and a CRISPR-deficient strain (ΔCRISPR), we demonstrated that this system significantly promotes biofilm formation and cell adhesion. However, the deficiency in the CRISPR-Cas system did not affect bacterial morphology or capsule production. In vitro studies showed that the CRISPR-Cas system enhances pro-inflammatory responses in RAW264.7 cells. The ΔCas3 and ΔCRISPR mutant strains exhibited reduced mortality rates in mice, accompanied by a decreased bacterial load in specific organs. RNA-seq analysis revealed distinct expression patterns in both mutant strains, with ΔCas3 displaying a broader range of differentially expressed genes, which accounted for over 70% of the differential genes observed in ΔCRISPR. These genes were predominantly linked to lipid metabolism, the ABC transport system, signal transduction, and quorum sensing. These findings enhance our understanding of the complex role of the CRISPR-Cas system in SEZ pathogenesis and provide valuable insights for developing innovative therapeutic strategies to combat infections

    A novel Pseudorabies virus vaccine developed using HDR-CRISPR/Cas9 induces strong humoral and cellular immune response in mice

    Get PDF
    Outbreaks of Pseudorabies (PR) by numerous highly virulent and antigenic variant Pseudorabies virus (PRV) strains have been causing severe economic losses to the pig industry in China since 2011. However, current commercial vaccines are often unable to induce thorough protective immunity. In this study, a TK/gI/gE deleted recombinant PRV expressing GM-CSF was developed by using the HDR-CRISPR/Cas9 system. Here, a four-sgRNA along with the Cas9D10A targeting system was utilized for TK/gI/gE gene deletion and GM-CSF insertion. Our study showed that the four-sgRNA targeting system appeared to have higher knock-in efficiency for PRVs editing. The replication of the recombinant PRVs were slightly lower than that of the parental strain, but they appeared to have similar properties in terms of growth curves and plaque morphology. The mice vaccinated with the recombinant PRV expressing GM-CSF via intramuscular injection showed no obvious clinical symptoms, milder pathological lesions, and were completely protected against wild-type PRV challenge. When compared to the triple gene-deleted PRV, the gB antibodies and neutralizing antibody titers were improved and the immunized mice appeared to have lower viral load and higher mRNA levels of IL-2, IL-4, IL-6, and IFN-γ in spleens. Our study offers a novel approach for recombinant PRV construction, and the triple gene-deleted PRV expressing GM-CSF could serve as a promising vaccine candidate for PR control
    corecore