137 research outputs found

    Cloning and characterization of microRNAs from wheat (Triticum aestivum L.)

    Get PDF
    A small RNA library was used to identify 58 miRNAs from 43 miRNA families from wheat (Triticum aestivum L.), and 46 potential targets were predicted

    The competition and equilibrium in power markets under decarbonization and decentralization

    Get PDF
    Equilibrium analysis has been widely studied as an effective tool to model gaming interactions and predict market results. However, as competition modes are fundamentally changed by the decarbonization and decentralization of power systems, analysis techniques must evolve. This article comprehensively reviews recent developments in modelling methods, practical settings and solution techniques in equilibrium analysis. Firstly, we review equilibrium in the evolving wholesale power markets which feature new entrants, novel trading products and multi-stage clearing. Secondly, the competition modes in the emerging distribution market and distributed resource aggregation are reviewed, and we compare peer-to-peer clearing, cooperative games and Stackelberg games. Furthermore, we summarize the methods to treat various information acquisition degrees, risk preferences and rationalities of market participants. To deal with increasingly complex market settings, this review also covers refined analytical techniques and agent-based models used to compute the equilibrium. Finally, based on this review, this paper summarizes key issues in the gaming and equilibrium analysis in power markets under decarbonization and decentralization

    Identification of SNPs in MITF associated with beak color of duck

    Get PDF
    Introduction: Beak color—a pigment-related trait—is an important feature of duck breeds. Recently, little research has addressed genetic mechanism of the beak colors in poultry, whereas the process and the regulation factors of melanin deposition have been well described.Methods: To investigate the genetic mechanism of beak colors, we conducted an integrated analysis of genomic selection signatures to identify a candidate site associated with beak color. For this, we used black-billed (Yiyang I meat duck synthetic line H1, H2, H3&HF) and yellow-billed ducks (Cherry Valley ducks and white feather Putian black duck). Quantitative real-time PCR and genotyping approaches were used to verify the function of the candidate site.Results: We identified 3,895 windows containing 509 genes. After GO and KEGG enrichment analysis, nine genes were selected. Ultimately, MITF was selected by comparing the genomic differentiation (FST). After loci information selection, 41 extreme significantly different loci were selected, which are all located in intron regions of MITF and are in almost complete linkage disequilibrium. Subsequently, the site ASM874695v1:10:g.17814522T > A in MITF was selected as the marker site. Furthermore, we found that MITF expression is significantly higher in black-beaked ducks than in yellow-beaked ducks of the F2 generation (p < 0.01). After genotyping, most yellow-billed individuals are found with homozygous variant; at the same time, there are no birds with homozygous variant in black-billed populations, while the birds with homozygous and heterozygous variant share the same proportion.Conclusion:MITF plays a very critical role in the melanogenesis and melanin deposition of duck beaks, which can effectively affect the beak color. The MITF site, ASM874695v1:10:g.17814522T > A could be selected as a marker site for the duck beak color phenotype

    Metagenomic insights into the relationship between gut microbiota and residual feed intake of small-sized meat ducks

    Get PDF
    IntroductionThe objective of this study was to determine the regulatory effects of gut microbiota on the feed efficiency (FE) of small-sized meat ducks by evaluating correlations between gut microbiota and residual feed intake (RFI).MethodsA total of 500 21-day-old healthy male ducks with similar initial body weights (645 ± 15.0 g) were raised contemporaneously in the same experimental facility until slaughter at 56 days of age. In total, nine low-RFI (LR) and nine high-RFI (HR) birds were selected for further gut microbiota composition and functional analyses based on the production performance, and the RFI was calculated from 22 to 56 days of age.ResultsGrowth performance results indicated a significantly lower RFI, feed conversion ratio, feed intake, and average daily feed intake in the LR ducks (P < 0.05). Taxonomy results of gut microbiota showed the identification of 19 kinds of phyla and more than 250 kinds of genera in all samples. No significant discrepancies in cecal bacterial α-diversity were discovered between the LR and HR groups, which indicated that the microbial modulatory effects on RFI may be attributed to the bacterial composition, rather than the species diversity. Differential analysis of bacterial communities between the LR and HR groups showed a significant increment of Firmicutes and a significant decline of Bacteroidetes in the LR group (P < 0.05). Specifically, genera of Erysipelatoclostridium, Parasutterella, Fournierella, and Lactococcus significantly proliferated, while Bacteroides significantly decreased in the LR group (P < 0.05). Furthermore, correlation analysis showed that the RFI was significantly correlated with carbohydrate metabolism-related bacteria including Bacteroides, Alistipes, Bifidobacterium, Ruminiclostridium_9, Sellimonas, Oscillibacter, Escherichia-Shigella, Lactococcus, and Streptococcus.ConclusionIn conclusion, the communities related to carbohydrate metabolism had positive regulatory effects on the FE of small-sized meat ducks, promoting it by improving the relative abundance and utilization of these communities. The present study provides valuable insight into the dynamics of gut microbiota underlying the variations in the FE of small-sized meat ducks

    Large-scale ordering of nanoparticles using viscoelastic shear processing

    Get PDF
    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group.Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear (BIOS) technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong structural colour. With oscillatory strain amplitudes of 300%, crystallisation initiates at the wall and develops quickly across the bulk within only 5 oscillations yielding sharp intense reflectance peaks of tunable colour. The resulting structure of randomly stacked hexagonal close-packed layers parallel to the shear plane, is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonics materials, and forms a generic tool for ordering nanoparticles.We acknowledge EPSRC grants EP/G060649/1, EP/H027130/1, EP/E040241, EP/L027151/1 and EU ERC grants LINASS 320503 and FP7 291522-3DIMAGE

    Exploring the shared molecular mechanism of microvascular and macrovascular complications in diabetes: Seeking the hub of circulatory system injury

    Get PDF
    BackgroundMicrovascular complications, such as diabetic retinopathy (DR) and diabetic nephropathy (DN), and macrovascular complications, referring to atherosclerosis (AS), are the main complications of diabetes. Blindness or fatal microvascular diseases are considered to be identified earlier than fatal macrovascular complications. Exploring the intrinsic relationship between microvascular and macrovascular complications and the hub of pathogenesis is of vital importance for prolonging the life span of patients with diabetes and improving the quality of life.Materials and methodsThe expression profiles of GSE28829, GSE30529, GSE146615 and GSE134998 were downloaded from the Gene Expression Omnibus database, which contained 29 atherosclerotic plaque samples, including 16 AS samples and 13 normal controls; 22 renal glomeruli and tubules samples from diabetes nephropathy including 12 DN samples and 10 normal controls; 73 lymphoblastoid cell line samples, including 52 DR samples and 21 normal controls. The microarray datasets were consolidated and DEGs were acquired and further analyzed by bioinformatics techniques including GSEA analysis, GO-KEGG functional clustering by R (version 4.0.5), PPI analysis by Cytoscape (version 3.8.2) and String database, miRNA analysis by Diana database, and hub genes analysis by Metascape database. The drug sensitivity of characteristic DEGs was analyzed.ResultA total of 3709, 4185 and 8086 DEGs were recognized in AS, DN, DR, respectively, with 1820, 1666, 888 upregulated and 1889, 2519, 7198 downregulated. GO and KEGG pathway analyses of DEGs and GSEA analysis of common differential genes demonstrated that these significant sites focused primarily on inflammation-oxidative stress and immune regulation pathways. PPI networks show the connection and regulation on top-250 significant sites of AS, DN, DR. MiRNA analysis explored the non-coding RNA upstream regulation network and significant pathway in AS, DN, DR. The joint analysis of multiple diseases shows the common influenced pathways of AS, DN, DR and explored the interaction between top-1000 DEGs at the same time.ConclusionIn the microvascular and macrovascular complications of diabetes, immune-mediated inflammatory response, chronic inflammation caused by endothelial cell activation and oxidative stress are the three links linking atherosclerosis, diabetes retinopathy and diabetes nephropathy together. Our study has clarified the intrinsic relationship and common tissue damage mechanism of microcirculation and circulatory system complications in diabetes, and explored the mechanism center of these two vascular complications. It has far-reaching clinical and social value for reducing the incidence of fatal events and early controlling the progress of disabling and fatal circulatory complications in diabetes

    Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Auxin signaling is vital for plant growth and development, and plays important role in apical dominance, tropic response, lateral root formation, vascular differentiation, embryo patterning and shoot elongation. Auxin Response Factors (ARFs) are the transcription factors that regulate the expression of auxin responsive genes. The <it>ARF </it>genes are represented by a large multigene family in plants. The first draft of full maize genome assembly has recently been released, however, to our knowledge, the <it>ARF </it>gene family from maize (<it>ZmARF </it>genes) has not been characterized in detail.</p> <p>Results</p> <p>In this study, 31 maize (<it>Zea mays </it>L.) genes that encode ARF proteins were identified in maize genome. It was shown that maize <it>ARF </it>genes fall into related sister pairs and chromosomal mapping revealed that duplication of <it>ZmARFs </it>was associated with the chromosomal block duplications. As expected, duplication of some <it>ZmARFs </it>showed a conserved intron/exon structure, whereas some others were more divergent, suggesting the possibility of functional diversification for these genes. Out of these 31 <it>ZmARF </it>genes, 14 possess auxin-responsive element in their promoter region, among which 7 appear to show small or negligible response to exogenous auxin. The 18 <it>ZmARF </it>genes were predicted to be the potential targets of small RNAs. Transgenic analysis revealed that increased miR167 level could cause degradation of transcripts of six potential targets (<it>ZmARF3</it>, <it>9</it>, <it>16</it>, <it>18</it>, <it>22 </it>and <it>30</it>). The expressions of maize <it>ARF </it>genes are responsive to exogenous auxin treatment. Dynamic expression patterns of <it>ZmARF </it>genes were observed in different stages of embryo development.</p> <p>Conclusions</p> <p>Maize <it>ARF </it>gene family is expanded (31 genes) as compared to <it>Arabidopsis </it>(23 genes) and rice (25 genes). The expression of these genes in maize is regulated by auxin and small RNAs. Dynamic expression patterns of <it>ZmARF </it>genes in embryo at different stages were detected which suggest that maize <it>ARF </it>genes may be involved in seed development and germination.</p
    • …
    corecore