3 research outputs found

    High‐Purity Hybrid Structural Colors by Enhancing Optical Absorption of Organic Dyes in Resonant Cavity

    Full text link
    This work presents a novel approach of incorporating an ultrathin dye film into a classic dielectric‐absorber‐dielectric‐metal resonator configuration for generating high‐purity reflective structural colors. Utilizing a thin film of organic dye having the same color as the targeted reflection color as a part of the cavity layer in the structure, its absorption at complementary color wavelengths is significantly enhanced due to the strong cavity resonances, hence reflection at the unwanted wavelengths strongly suppressed, leading to the improved purity of the desired reflective color. This design principle can be applied to create essentially all colors, and is demonstrated by experiment to produce high‐purity blue and red colors. In addition, the fabricated device exhibits outstanding stability under UV exposure without additional protections compared to traditional organic pigments. The proposed method in this work largely simplifies the design process of high‐purity structural colors, which paves the way for more potential applications in various fields.A simple approach that incorporates an ultrathin dye film into a classic dielectric‐absorber‐dielectric‐metal multilayered structure is presented to produce high‐purity reflective colors. The enhanced optical absorptions of the colored dye layer as a result of the strong cavity resonances can effectively suppress the reflection within the unwanted wavelength range, thus significantly improving the purity of the desired reflective colors.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155972/1/adom202000317.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155972/2/adom202000317_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155972/3/adom202000317-sup-0001-SuppMat.pd

    On-chip, High-sensitivity Temperature Sensors Based on Dye-doped Solid-state Polymer Microring Lasers

    Get PDF
    We developed a chip-scale temperature sensor with a high sensitivity of 228.6 pm/°C based on a rhodamine 6G (R6G)-doped SU-8 whispering-gallery mode microring laser. The optical mode was largely distributed in a polymer core layer with a 30 Όm height that provided detection sensitivity, and the chemically robust fused-silica microring resonator host platform guaranteed its versatility for investigating different functional polymer materials with different refractive indices. As a proof of concept, a dye-doped hyperbranched polymer (TZ-001) microring laser-based temperature sensor was simultaneously developed on the same host wafer and characterized using a free-space optics measurement setup. Compared to TZ-001, the SU-8 polymer microring laser had a lower lasing threshold and a better photostability. The R6G-doped SU-8 polymer microring laser demonstrated greater adaptability as a high-performance temperature-sensing element. In addition to the sensitivity, the temperature resolutions for the laser-based sensors were also estimated to be 0.13 °C and 0.35 °C, respectively. The rapid and simple implementation of micrometer-sized temperature sensors that operate in the range of 31 – 43 °C enables their potential application in thermometry

    42.4: Compact Stereo Waveguide Display Using a Polarization‐Multiplexed In‐coupling Metagrating

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/169290/1/sdtp15185.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/169290/2/sdtp15185_am.pd
    corecore