61 research outputs found

    Nanophotonic soliton-based microwave synthesizers

    Full text link
    Microwave photonic technologies, which upshift the carrier into the optical domain to facilitate the generation and processing of ultrawide-band electronic signals at vastly reduced fractional bandwidths, have the potential to achieve superior performance compared to conventional electronics for targeted functions. For microwave photonic applications such as filters, coherent radars, subnoise detection, optical communications and low-noise microwave generation, frequency combs are key building blocks. By virtue of soliton microcombs, frequency combs can now be built using CMOS compatible photonic integrated circuits, operated with low power and noise, and have already been employed in system-level demonstrations. Yet, currently developed photonic integrated microcombs all operate with repetition rates significantly beyond those that conventional electronics can detect and process, compounding their use in microwave photonics. Here we demonstrate integrated soliton microcombs operating in two widely employed microwave bands, X- and K-band. These devices can produce more than 300 comb lines within the 3-dB-bandwidth, and generate microwave signals featuring phase noise levels below 105 dBc/Hz (140 dBc/Hz) at 10 kHz (1 MHz) offset frequency, comparable to modern electronic microwave synthesizers. In addition, the soliton pulse stream can be injection-locked to a microwave signal, enabling actuator-free repetition rate stabilization, tuning and microwave spectral purification, at power levels compatible with silicon-based lasers (<150 mW). Our results establish photonic integrated soliton microcombs as viable integrated low-noise microwave synthesizers. Further, the low repetition rates are critical for future dense WDM channel generation schemes, and can significantly reduce the system complexity of photonic integrated frequency synthesizers and atomic clocks

    Dynamics of soliton crystals in optical microresonators

    Full text link
    Dissipative Kerr solitons in optical microresonators provide a unifying framework for nonlinear optical physics with photonic-integrated technologies and have recently been employed in a wide range of applications from coherent communications to astrophysical spectrometer calibration. Dissipative Kerr solitons can form a rich variety of stable states, ranging from breathers to multiple-soliton formations, among which, the recently discovered soliton crystals stand out. They represent temporally-ordered ensembles of soliton pulses, which can be regularly arranged by a modulation of the continuous-wave intracavity driving field. To date, however, the dynamics of soliton crystals remains mainly unexplored. Moreover, the vast majority of the reported crystals contained defects - missing or shifted pulses, breaking the symmetry of these states, and no procedure to avoid such defects was suggested. Here we explore the dynamical properties of soliton crystals and discover that often-neglected chaotic operating regimes of the driven optical microresonator are the key to their understanding. In contrast to prior work, we prove the viability of deterministic generation of perfect\mathrm{perfect} soliton crystal states, which correspond to a stable, defect-free lattice of optical pulses inside the cavity. We discover the existence of critical pump power, below which the stochastic process of soliton excitation suddenly becomes deterministic enabling faultless, device-independent access to perfect soliton crystals. Furthermore, we demonstrate the switching of soliton crystal states and prove that it is also tightly linked to the pump power and is only possible in the regime of transient chaos. Finally, we report a number of other dynamical phenomena experimentally observed in soliton crystals including the formation of breathers, transitions between soliton crystals, their melting, and recrystallization

    Rapid synthesis of BiOBrxI1-x photocatalysts : insights to the visible-light photocatalytic activity and strong deviation from Vegard’s Law

    Get PDF
    This work was supported by the Royal Society for international collaboration grants (IE160277 and IE/CNSFC170670) and Sir John Houghton Fellowship in Jesus College at University of Oxford. ZJ appreciated the institutional GCRF fund from EPSRC and JG appreciates the EUSTICE scholarship from University of Southampton.A series of visible-light-responsive BiOBrxI1-x solid solutions were prepared by a rapid and efficient ultrasonication synthesis and applied in photodegradation of Rhodamine B in aqueous solution. The detailed characterisations showed that the lattice parameters and their band structures of the BiOBrxI1-x solid solutions significantly deviated from the well-established Vegard’s law for solid solution materials. The Mulliken electronegativity and valence band XPS analyses revealed that the substitution of Br by less electronegative iodine can simultaneously modulate the edges of conductance and valence band of the BiOBr, leading to nonlinear dependence of bandgap (Eg) on the halogen anion concentrations. Although the solid solution displayed superior RhB photodegration activity to BiOI, only Br-rich BiOBrxI1-x solid solutions (x>0.5) were more active than BiOBr and BiOI, with the optimal one is BiOBr0.75I0.25. The Br-dependence of bandstructure and photocatalytic activity for the BiOBrxI1-x solid solutions as well as their rate-limiting radical species were also clarified based on experimental and theoretical analyses.PostprintPeer reviewe

    Nanophotonic supercontinuum based mid-infrared dual-comb spectroscopy

    Full text link
    High resolution and fast detection of molecular vibrational absorption is important for organic synthesis, pharmaceutical process and environmental monitoring, and is enabled by mid-infrared (mid-IR) laser frequency combs via dual-comb spectroscopy. Here, we demonstrate a novel and highly simplified approach to broadband mid-IR dual-comb spectroscopy via supercontinuum generation, achieved using unprecedented nanophotonic dispersion engineering that allows for flat-envelope, ultra-broadband mid-IR comb spectra. The mid-IR dual-comb has an instantaneous bandwidth covering the functional group region from 2800-3600 1/cm, comprising more than 100,000 comb lines, enabling parallel gas-phase detection with a high sensitivity, spectral resolution, and speed. In addition to the traditional functional groups, their isotopologues are also resolved in the supercontinuum based dual-comb spectroscopy. Our approach combines well established fiber laser combs, digital coherent data averaging, and integrated nonlinear photonics, each in itself a state-of-the-art technology, signalling the emergence of mid-IR dual-comb spectroscopy for use outside of the protected laboratory environment

    A vector spectrum analyzer of 55.1 THz spectral bandwidth and 99 kHz frequency resolution

    Full text link
    The analysis of optical spectra - emission or absorption - has been arguably the most powerful approach for discovering and understanding matters. The invention and development of many kinds of spectrometers have equipped us with versatile yet ultra-sensitive diagnostic tools for trace gas detection, isotope analysis, and resolving hyperfine structures of atoms and molecules. With proliferating data and information, urgent and demanding requirements have been placed today on spectrum analysis with ever-increasing spectral bandwidth and frequency resolution. These requirements are especially stringent for broadband laser sources that carry massive information, and for dispersive devices used in information processing systems. In addition, spectrum analyzers are expected to probe the device's phase response where extra information is encoded. Here we demonstrate a novel vector spectrum analyzer (VSA) that is capable to characterize passive devices and active laser sources in one setup. Such a dual-mode VSA can measure loss, phase response and dispersion property of passive devices. It also can coherently map a broadband laser spectrum into the RF domain. The VSA features a bandwidth of 55.1 THz (1260 to 1640 nm), frequency resolution of 99 kHz, and dynamic range of 56 dB. Meanwhile, our fiber-based VSA is compact and robust. It requires neither high-speed modulators and photodetectors, nor any active feedback control. Finally, we successfully employ our VSA for applications including characterization of integrated dispersive waveguides, mapping frequency comb spectra, and coherent light detection and ranging (LiDAR). Our VSA presents an innovative approach for device analysis and laser spectroscopy, and can play a critical role in future photonic systems and applications for sensing, communication, imaging, and quantum information processing

    Integrated turnkey soliton microcombs operated at CMOS frequencies

    Get PDF
    We experimentally discovered and theoretically explain a novel turnkey regime for operation of soliton microcombs, wherein a new operating point enables the direct access of the soliton state by simple turn-on of the pump laser

    Integrated turnkey soliton microcombs operated at CMOS frequencies

    Get PDF
    While soliton microcombs offer the potential for integration of powerful frequency metrology and precision spectroscopy systems, their operation requires complex startup and feedback protocols that necessitate difficult-to-integrate optical and electrical components. Moreover, CMOS-rate microcombs, required in nearly all comb systems, have resisted integration because of their power requirements. Here, a regime for turnkey operation of soliton microcombs co-integrated with a pump laser is demonstrated and theoretically explained. Significantly, a new operating point is shown to appear from which solitons are generated through binary turn-on and turn-off of the pump laser, thereby eliminating all photonic/electronic control circuitry. These features are combined with high-Q Si3N4Si_3N_4 resonators to fully integrate into a butterfly package microcombs with CMOS frequencies as low as 15 GHz, offering compelling advantages for high-volume production.Comment: Boqiang Shen, Lin Chang, Junqiu Liu, Heming Wang and Qi-Fan Yang contributed equally to this wor

    Integrated turnkey soliton microcombs

    Get PDF
    Optical frequency combs have a wide range of applications in science and technology. An important development for miniature and integrated comb systems is the formation of dissipative Kerr solitons in coherently pumped high-quality-factor optical microresonators. Such soliton microcombs have been applied to spectroscopy, the search for exoplanets, optical frequency synthesis, time keeping and other areas. In addition, the recent integration of microresonators with lasers has revealed the viability of fully chip-based soliton microcombs. However, the operation of microcombs requires complex startup and feedback protocols that necessitate difficult-to-integrate optical and electrical components, and microcombs operating at rates that are compatible with electronic circuits—as is required in nearly all comb systems—have not yet been integrated with pump lasers because of their high power requirements. Here we experimentally demonstrate and theoretically describe a turnkey operation regime for soliton microcombs co-integrated with a pump laser. We show the appearance of an operating point at which solitons are immediately generated by turning the pump laser on, thereby eliminating the need for photonic and electronic control circuitry. These features are combined with high-quality-factor Si₃N₄ resonators to provide microcombs with repetition frequencies as low as 15 gigahertz that are fully integrated into an industry standard (butterfly) package, thereby offering compelling advantages for high-volume production
    • 

    corecore