15,953 research outputs found

    Exposure to the complement C5b-9 complex sensitizes 661W photoreceptor cells to both apoptosis and necroptosis.

    Get PDF
    The loss of photoreceptors is the defining characteristic of many retinal degenerative diseases, but the mechanisms that regulate photoreceptor cell death are not fully understood. Here we have used the 661W cone photoreceptor cell line to ask whether exposure to the terminal complement complex C5b-9 induces cell death and/or modulates the sensitivity of these cells to other cellular stressors. 661W cone photoreceptors were exposed to complete normal human serum following antibody blockade of CD59. Apoptosis induction was assessed morphologically, by flow cytometry, and on western blotting by probing for cleaved PARP and activated caspase-3. Necroptosis was assessed by flow cytometry and Sirtuin 2 inhibition using 2-cyano-3-[5-(2,5-dichlorophenyl)-2-furyl]-N-5-quinolinylacrylamide (AGK2). The sensitivity of 661W cells to ionomycin, staurosporine, peroxide and chelerythrine was also investigated, with or without prior formation of C5b-9. 661W cells underwent apoptotic cell death following exposure to C5b-9, as judged by poly(ADP-ribose) polymerase 1 cleavage and activation of caspase-3. We also observed apoptotic cell death in response to staurosporine, but 661W cells were resistant to both ionomycin and peroxide. Interestingly, C5b-9 significantly increased 661W sensitivity to staurosporine-induced apoptosis and necroptosis. These studies show that low levels of C5b-9 on 661W cells can induce apoptosis, and that C5b-9 specifically sensitizes 661W cells to certain apoptotic and necroptotic pathways. Our observations provide new insight into the potential role of the complement system in photoreceptor loss, with implications for the molecular aetiology of retinal disease

    Multi-gigabit microwave and millimeter-wave communications research at CSIRO

    Full text link
    © 2014 IEEE. High speed and long range wireless backhauls are cost-effective alternatives to fibre networks and becoming more and more attractive as the demand for broadband wireless services grows rapidly in recent years. However, current commercially available wireless backhaul systems neither provide sufficiently high speed nor meet the requirements to achieve both high speed and long range at the same time with sufficiently low latency for targeted applications. Traditional microwave systems can achieve long transmission range, but the data rates are limited to a few hundred Mega bits per second only. Multi-Gigabit wireless communications can be achieved using millimetre-wave (mm-wave) frequency bands, especially the E-bands, but the practical transmission range is still a major weakness. In this paper, the state-of-the-art microwave and mm-wave technologies developed at the Commonwealth Scientific and Industrial Research Organization (CSIRO) are introduced to demonstrate CSIRO's technology leadership in multi-Gigabit wireless communications research and development. The technology trends in multi-Gigabit wireless communications are also discussed and various recently developed microwave and mm-wave systems are compared. It is hoped that this paper will stimulate further research interest and industry development

    Joint transmitter and receiver I/Q imbalance estimation in presence of carrier frequency offset

    Full text link
    © 2015 IEEE. This paper proposes a simple frequency domain joint transmitter and receiver I/Q imbalance estimation method which exploits the phase rotation introduced by carrier frequency offset. Using two frequency domain training sequences inserted in each transmission frame, the transmitter and receiver I/Q imbalances can be jointly estimated over multiple frames. The transmitter I/Q imbalance parameter can be fed back to the transmitter for I/Q imbalance pre-compensation, whereas the receiver I/Q imbalance can be compensated locally followed by conventional frequency domain equalization. Numerical simulation results show that the image rejection ratios for both transmitter and receiver after I/Q imbalance compensation can be improved to over 50 dB which is necessary for multichannel systems with high order modulation and wide transmission bandwidth

    Unified out-of-band emission reduction with linear complexity for OFDM

    Full text link
    © 2014 IEEE. This paper proposes a unified out-of-band emission (OOBE) reduction framework with linear complexity for orthogonal frequency-division multiplexing (OFDM) systems. Unlike conventional spectral precoding approaches which use orthogonal precoding matrixes, this framework composes cancellation signals from the linear combinations of data symbols and minimizes the average OOBE power with a general least-squares solution. A joint frequency domain cancellation subcarrier and data domain cancellation symbol allocation scheme is also proposed for discrete Fourier transform precoded OFDM, by which the overall signal processing complexity of the OFDM transceiver is further reduced without impact on other system performance. The advantages of the proposed scheme is verified both analytically and by simulation as compared with some well-known low-complexity OOBE reduction schemes

    Wireless Device-to-Device Caching Networks with Distributed MIMO and Hierarchical Cooperations

    Full text link
    © 2017 IEEE. In this paper, we propose a new caching scheme for a random wireless device-to-device (D2D) network of n nodes with local caches, where each node intends to download files from a prefixed library via D2D links. Our proposed caching delivery includes two stages, employing distributed MIMO and hierarchical cooperations respectively. The distributed MIMO is applied to the first stage between source nodes and neighbours of the destination node. The induced multiplexing gain and diversity gain increase the number of simultaneous transmissions, improving the throughput of the network. The hierarchical cooperations are applied to the second stage to facilitate the transmissions between the destination node and its neighbours. The two stages together exploit spatial degrees of freedom as well as spatial reuse. We develop an uncoded random caching placement strategy to serve this cooperative caching delivery. Analytical results show that the average aggregate throughput of the network scales almost linearly with n, with a vanishing outage probability

    Directional antennas for point-to-multipoint millimetre wave communications

    Full text link
    © 2016 IEEE. In this paper, we investigate the feasibility and potential performance of applying an antenna array of directional elements such as horn antennas for mmWave point-to-multipoint communications. We propose a conceptual design of the array, and review options for antenna elements and mechanical steering devices. We then estimate the achievable performance with respect to link data rate and distance, and show that pointing to users exactly does not always achieve system capacity, but the gap is typically small. We also provide comparison for two types of multiple access schemes

    Massive hybrid antenna array for millimeter-wave cellular communications

    Full text link
    © 2002-2012 IEEE. A massive hybrid array consists of multiple analog subarrays, with each subarray having its digital processing chain. It offers the potential advantage of balancing cost and performance for massive arrays and therefore serves as an attractive solution for future millimeter-wave (mm- Wave) cellular communications. On one hand, using beamforming analog subarrays such as phased arrays, the hybrid configuration can effectively collect or distribute signal energy in sparse mm-Wave channels. On the other hand, multiple digital chains in the configuration provide multiplexing capability and more beamforming flexibility to the system. In this article, we discuss several important issues and the state-of-the-art development for mm-Wave hybrid arrays, such as channel modeling, capacity characterization, applications of various smart antenna techniques for single-user and multiuser communications, and practical hardware design. We investigate how the hybrid array architecture and special mm-Wave channel property can be exploited to design suboptimal but practical massive antenna array schemes. We also compare two main types of hybrid arrays, interleaved and localized arrays, and recommend that the localized array is a better option in terms of overall performance and hardware feasibility

    Signal stripping based sensing parameter estimation in perceptive mobile networks

    Full text link
    © 2017 IEEE. We propose signal stripping based approaches for estimating detailed channel composition parameters for sensing in the recently proposed perceptive mobile networks where simultaneous communication and radar sensing is performed. Via reconstructing a (differentiated) channel matrix, we obtain a signal model which can be solved by conventional compressive sensing (CS) techniques. Parameter estimation methods based on a 1-D CS algorithm are proposed and their effectiveness is validated by provided simulation results

    Angle-of-arrival acquisition and tracking via virtual subarrays in an analog array

    Full text link
    © 2019 IEEE. Angle-of-arrival (AoA) estimation is a challenging problem for analog antenna arrays. Typical algorithms use beam scanning and sweeping, which can be time-consuming, and the resolution is limited to the scanning step. In this paper, we propose a virtual-subarray based AoA estimation scheme, which divides an analog array into two virtual subarrays and can obtain a direct AoA estimate from every two temporal measurements. We propose different subarray constructions which lead to different range and accuracy of estimation. We provide detailed beamforming vector designs for these constructions and provide a performance lower bound for the estimator. We also present how to apply the estimator to AoA acquisition and tracking. Simulation results demonstrate that the proposed scheme significantly outperforms existing ones when the signal-to-noise ratio is not very low
    corecore