31,447 research outputs found

    Weak Gravity Conjecture for the Effective Field Theories with N Species

    Full text link
    We conjecture an intrinsic UV cutoff for the validity of the effective field theory with a large number of species coupled to gravity. In four dimensions such a UV cutoff takes the form Λ=λ/NMp\Lambda=\sqrt{\lambda/ N}M_p for NN scalar fields with the same potential λϕi4\lambda \phi_i^4, i=1,...,Ni=1,...,N. This conjecture implies that the assisted chaotic inflation or N-flation might be in the swampland, not in the landscape. Similarly a UV cutoff Λ=gMp/N\Lambda=gM_p/\sqrt{N} is conjectured for the U(1) gauge theory with NN species.Comment: 12 pages; refs added and some statements clarifie

    Anomalous Nernst and Hall effects in magnetized platinum and palladium

    Full text link
    We study the anomalous Nernst effect (ANE) and anomalous Hall effect (AHE) in proximity-induced ferromagnetic palladium and platinum which is widely used in spintronics, within the Berry phase formalism based on the relativistic band structure calculations. We find that both the anomalous Hall (σxyA\sigma_{xy}^A) and Nernst (αxyA\alpha_{xy}^A) conductivities can be related to the spin Hall conductivity (σxyS\sigma_{xy}^S) and band exchange-splitting (Δex\Delta_{ex}) by relations σxyA=ΔexeσxyS(EF)\sigma_{xy}^A =\Delta_{ex}\frac{e}{\hbar}\sigma_{xy}^S(E_F)' and αxyA=π23kB2TΔexσxys(μ)"\alpha_{xy}^A = -\frac{\pi^2}{3}\frac{k_B^2T\Delta_{ex}}{\hbar}\sigma_{xy}^s(\mu)", respectively. In particular, these relations would predict that the σxyA\sigma_{xy}^A in the magnetized Pt (Pd) would be positive (negative) since the σxyS(EF)\sigma_{xy}^S(E_F)' is positive (negative). Furthermore, both σxyA\sigma_{xy}^A and αxyA\alpha_{xy}^A are approximately proportional to the induced spin magnetic moment (msm_s) because the Δex\Delta_{ex} is a linear function of msm_s. Using the reported msm_s in the magnetized Pt and Pd, we predict that the intrinsic anomalous Nernst conductivity (ANC) in the magnetic platinum and palladium would be gigantic, being up to ten times larger than, e.g., iron, while the intrinsic anomalous Hall conductivity (AHC) would also be significant.Comment: Accepted for publication in the Physical Review

    On cost-effective communication network designing

    Full text link
    How to efficiently design a communication network is a paramount task for network designing and engineering. It is, however, not a single objective optimization process as perceived by most previous researches, i.e., to maximize its transmission capacity, but a multi-objective optimization process, with lowering its cost to be another important objective. These two objectives are often contradictive in that optimizing one objective may deteriorate the other. After a deep investigation of the impact that network topology, node capability scheme and routing algorithm as well as their interplays have on the two objectives, this letter presents a systematic approach to achieve a cost-effective design by carefully choosing the three designing aspects. Only when routing algorithm and node capability scheme are elegantly chosen can BA-like scale-free networks have the potential of achieving good tradeoff between the two objectives. Random networks, on the other hand, have the built-in character for a cost-effective design, especially when other aspects cannot be determined beforehand.Comment: 6 pages, 4 figure

    Top-N Recommendation on Graphs

    Full text link
    Recommender systems play an increasingly important role in online applications to help users find what they need or prefer. Collaborative filtering algorithms that generate predictions by analyzing the user-item rating matrix perform poorly when the matrix is sparse. To alleviate this problem, this paper proposes a simple recommendation algorithm that fully exploits the similarity information among users and items and intrinsic structural information of the user-item matrix. The proposed method constructs a new representation which preserves affinity and structure information in the user-item rating matrix and then performs recommendation task. To capture proximity information about users and items, two graphs are constructed. Manifold learning idea is used to constrain the new representation to be smooth on these graphs, so as to enforce users and item proximities. Our model is formulated as a convex optimization problem, for which we need to solve the well-known Sylvester equation only. We carry out extensive empirical evaluations on six benchmark datasets to show the effectiveness of this approach.Comment: CIKM 201

    Limits from Weak Gravity Conjecture on Dark Energy Models

    Full text link
    The weak gravity conjecture has been proposed as a criterion to distinguish the landscape from the swampland in string theory. As an application in cosmology of this conjecture, we use it to impose theoretical constraint on parameters of two types of dark energy models. Our analysis indicates that the Chaplygin-gas-type models realized in quintessence field are in the swampland, whereas the aa power-low decay model of the variable cosmological constant can be viable but the parameters are tightly constrained by the conjecture.Comment: Revtex4, 8 pages, 5 figures; References, minor corrections in content, and acknowledgement adde

    Effect of user tastes on personalized recommendation

    Full text link
    In this paper, based on a weighted projection of the user-object bipartite network, we study the effects of user tastes on the mass-diffusion-based personalized recommendation algorithm, where a user's tastes or interests are defined by the average degree of the objects he has collected. We argue that the initial recommendation power located on the objects should be determined by both of their degree and the users' tastes. By introducing a tunable parameter, the user taste effects on the configuration of initial recommendation power distribution are investigated. The numerical results indicate that the presented algorithm could improve the accuracy, measured by the average ranking score, more importantly, we find that when the data is sparse, the algorithm should give more recommendation power to the objects whose degrees are close to the users' tastes, while when the data becomes dense, it should assign more power on the objects whose degrees are significantly different from user's tastes.Comment: 8 pages, 4 figure

    Effective generation of Ising interaction and cluster states in coupled microcavities

    Full text link
    We propose a scheme for realizing the Ising spin-spin interaction and atomic cluster states utilizing trapped atoms in coupled microcavities. It is shown that the atoms can interact with each other via the exchange of virtual photons of the cavities. Through suitably tuning the parameters, an effective Ising spin-spin interaction can be generated in this optical system, which is used to produce the cluster states. This scheme does not need the preparation of initial states of atoms and cavity modes, and is insensitive to cavity decay.Comment: 11pages, 2 figures, Revtex

    A Tracker Solution for a Holographic Dark Energy Model

    Full text link
    We investigate a kind of holographic dark energy model with the future event horizon the IR cutoff and the equation of state -1. In this model, the constraint on the equation of state automatically specifies an interaction between matter and dark energy. With this interaction included, an accelerating expansion is obtained as well as the transition from deceleration to acceleration. It is found that there exists a stable tracker solution for the numerical parameter d>1d>1, and dd smaller than one will not lead to a physical solution. This model provides another possible phenomenological framework to alleviate the cosmological coincidence problem in the context of holographic dark energy. Some properties of the evolution which are relevant to cosmological parameters are also discussed.Comment: 10 pages, 3 figures; accepted for publication in Int.J.Mod.Phys.

    Multiple Superconducting Gaps, Anisotropic Spin Fluctuations and Spin-Orbit Coupling in Iron-Pnictides

    Full text link
    This article reviews the NMR and NQR studies on iron-based high-temperature superconductors by the IOP/Okayama group. It was found that the electron pairs in the superconducting state are in the spin-singlet state with multiple fully-opened energy gaps. The antiferromagnetic spin fluctuations in the normal state are found to be closely correlated with the superconductivity. Also the antiferromagnetic spin fluctuations are anisotropic in the spin space, which is different from the case in copper oxide superconductors. This anisotropy originates from the spin-orbit coupling and is an important reflection of the multiple-bands nature of this new class of superconductors.Comment: 20 pages, 16 figure
    corecore