117 research outputs found

    Effect of Al-10Sr on microstructure and fracture toughness at room temperature of Nb- Si-Ti alloys

    Get PDF
    With the development of the aero-engine performance to a higher thrust- weight ratio, Nb-Si system ultra-high temperature alloy has been considered as a very promising material to replace Ni base superalloys in the service temperature range over 1350℃. In this paper, the effect of Al-Sr addition on the microstructure and fracture toughness of Nb-Si-Ti alloys was studied. Microstructure of the alloys was observed by scanning electron microscope, and their phase compositions were analyzed with X-ray diffraction and Electro-Probe micro-analyzer. And the room temperature fracture toughness was measured. The results indicated that the phases of Nbss and Nb3Si were presented in Nb-Si-Ti alloys. However, with the Al-10Sr addition, the alloys were composed of Nbss and β-Nb5Si3 phases. Compared with the Nb-Si-Ti alloys, the value of room temperature fracture toughness increased dramatically with the addition of Al-10Sr alloy. The relationship between the microstructure and the fracture toughness was discussed

    Oxidation-induced starch molecular degradation:A comprehensive kinetic investigation using NaClO/NaBr/TEMPO system

    Get PDF
    Starch degradation often coincides with its chemical modification, and understanding how chemical modification influences starch degradation is vital for determining the properties of the resultant modified products. This work investigates the effect of oxidation on starch molecular degradation, examining factors such as oxidation degree, reaction kinetics, and degradation patterns during 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated starch oxidation under varying conditions, including reaction time, pH, temperature, and concentrations of NaBr, TEMPO, and NaClO. Results emphasize that extended reaction durations primarily lead to β-elimination, causing α-1,4 linkage cleavages. pH 8.5 favored non-selective oxidation, while pH 11 enhanced β-elimination, both slowing the reaction rate and severely damaging starch chains (Mw of 8.8 × 105 g/mol and 7.2 × 105 g/mol, respectively). Elevated temperature from 0 to 30 °C significantly expedited both selective and non-selective oxidation, dramatically reducing molecular mass to 8.1 × 105 g/mol. Increasing concentrations of NaBr and TEMPO boost the reaction rate with minimal impact on molecular mass. Meanwhile, increasing NaClO concentration from 0.2 to 2.2 mmol/g-starch not only affects the reaction rate but also reinforces β-elimination, enhancing molecular degradation. This study is insightful for starch modification to achieve desired oxidation levels and chain lengths by controlling reaction conditions, offering potential advancements in oxidized starch-based materials like nano micelles

    Developing Nb-Si based ultra-high temperature materials in BIAM

    Get PDF
    Nb-Si based materials have the attractive characters such as of higher melting points(>1750℃), relatively lower densities(6.6-7.2g/cm2) and excellent high-temperature strength in comparison with Ni based superalloys, which are greatly potential to serve in the condition with the temperature range of 1200~1400℃ as a family of ultrahigh temperature structural materials to replace Ni base superalloy. However, , there are three challenges to the application of Nb-Si based materials, including the balance of mechanical properties, the manufacturing processing and the high temperature oxidation resistance. In Beijing Institute of Aeronautical Materials, the research about optimizing chemical composition, ultrahigh temperature heat-treatment and developing special manufacturing processing have been carried out. The results showed that the V and rare metal is able to increase the room temperature toughness of Nb-Si based materials. And the addition of Cr and V are beneficial to the oxidation resistance properties, which will decreased the average oxidation rate and the spallation of oxide scale. After heat-treated at 1600℃/20h, the microstructure of Nb-Si based Materials is finer and the rupture strength at room temperature and 700℃ were raised. With the directional solidification method (DS), the materials with directional solidified microstructures are obtained and with selected laser melting method (SLM), the materials with uniform fine microstructures. The maximum value of tensile strength at 1250℃ was ~190MPa at 0.2 mm/min solidification rate. The room temperature fracture toughness and ductile are improved by SLM. Especially, the ceramic shell for the investment casting of Nb-Si based materials are manufactured successfully, which service temperature is over 300℃ higher than the conventional ceramic shell for Ni-based superalloys. Based on the ceramic shell, the simulated turbine blades with fine microstructure and without inner defects have been prepared at 2000℃

    Murine Trophoblast Stem Cells and Their Differentiated Cells Attenuate Zika Virus In Vitro By Reducing Glycosylation of the Viral Envelope Protein

    Get PDF
    Zika virus (ZIKV) infection during pregnancy can cause devastating fetal neuropathological abnormalities, including microcephaly. Most studies of ZIKV infection in pregnancy have focused on post-implantation stage embryos. Currently, we have limited knowledge about how a pre-implantation stage embryo deals with a viral infection. This study investigates ZIKV infection on mouse trophoblast stem cells (TSCs) and their in vitro differentiated TSCs (DTSCs), which resemble the cellular components of the trophectoderm layer of the blastocyst that later develops into the placenta. We demonstrate that TSCs and DTSCs are permissive to ZIKV infection; however, ZIKV propagated in TSCs and DTSCs exhibit substantially lower infectivity, as shown in vitro and in a mouse model compared to ZIKV that was generated in Vero cells or mouse embryonic fibroblasts (MEFs). We further show that the low infectivity of ZIKV propagated in TSCs and DTSCs is associated with a reduced level of glycosylation on the viral envelope (E) proteins, which are essential for ZIKV to establish initial attachment by binding to cell surface glycosaminoglycans (GAGs). The decreased level of glycosylation on ZIKV E is, at least, partially due to the low-level expression of a glycosylation-related gene, Hexa, in TSCs and DTSCs. Furthermore, this finding is not limited to ZIKV since similar observations have been made as to the chikungunya virus (CHIKV) and West Nile virus (WNV) propagated in TSCs and DTSCs. In conclusion, our results reveal a novel phenomenon suggesting that murine TSCs and their differentiated cells may have adapted a cellular glycosylation system that can limit viral infectivity by altering the glycosylation of viral envelope proteins, therefore serving as a unique, innate anti-viral mechanism in the pre-implantation stage embryo

    The Application of Driver Models in the Safety Assessment of Autonomous Vehicles: A Survey

    Full text link
    Driver models play a vital role in developing and verifying autonomous vehicles (AVs). Previously, they are mainly applied in traffic flow simulation to model realistic driver behavior. With the development of AVs, driver models attract much attention again due to their potential contributions to AV certification. The simulation-based testing method is considered an effective measure to accelerate AV testing due to its safe and efficient characteristics. Nonetheless, realistic driver models are prerequisites for valid simulation results. Additionally, an AV is assumed to be at least as safe as a careful and competent driver. Therefore, driver models are inevitable for AV safety assessment. However, no comparison or discussion of driver models is available regarding their utility to AVs in the last five years despite their necessities in the release of AVs. This motivates us to present a comprehensive survey of driver models in the paper and compare their applicability. Requirements for driver models in terms of their application to AV safety assessment are discussed. A summary of driver models for simulation-based testing and AV certification is provided. Evaluation metrics are defined to compare their strength and weakness. Finally, an architecture for a careful and competent driver model is proposed. Challenges and future work are elaborated. This study gives related researchers especially regulators an overview and helps them to define appropriate driver models for AVs

    Biofunctional chitosan–biopolymer composites for biomedical applications

    Get PDF
    In light of escalating biomedical demands across diverse diseases, there arises a pressing need for the development of sophisticated biocompatible materials exhibiting augmented biological functionality. Chitosan, a cationic polyelectrolyte copolymer of natural origin, distinguishes itself through its extraordinary biological properties, positioning it as a promising starting material to develop versatile biomedical materials. Tremendous attention has been directed towards the creation of high-performance biocomposites, achieved through the strategic manipulation of chitosan’s structure or its derivative, along with the amalgamation of other biopolymers. This comprehensive review intricately explores recent advancements in chitosan-based biofunctional materials, delving into formulations involving various biopolymers including polysaccharides and proteins. It places specific emphasis on the progress in chitosan chemistry and materials development, encompassing particles, hydrogels, aerogels, membranes, films, and sponges. Also, this review critically evaluates the development and functional properties of biofunctional chitosan–biopolymer composite materials, spotlighting interactions, both dynamic covalent and noncovalent, and their pivotal roles in materials formation. These interactions may either be inherent or realized through chemical modification such as “Click” chemistry, polymer grafts, mussel-inspired chemistry, and selective oxidation. Furthermore, the text illustrates the current and potential biomedical applications of these biofunctional composite materials, spanning from wound dressing to tissue engineering (skin, bone, cartilage, and nerve), the controlled release and targeted delivery of drugs/bioactive compounds, biosensing, and 3D printing. Additionally, it addresses critical challenges within the field, posits potential solutions, and provides a forward-looking perspective on the future directions of functional biomaterials and design strategies

    The Molecular Basis for the Lack of Inflammatory Responses in Mouse Embryonic Stem Cells and Their Differentiated Cells

    Get PDF
    We reported previously that mouse embryonic stem cells do not have a functional IFN-based antiviral mechanism. The current study extends our investigation to the inflammatory response in mouse embryonic stem cells and mouse embryonic stem cell–differentiated cells. We demonstrate that LPS, TNF-α, and viral infection, all of which induce robust inflammatory responses in naturally differentiated cells, failed to activate NF-κB, the key transcription factor that mediates inflammatory responses, and were unable to induce the expression of inflammatory genes in mouse embryonic stem cells. Similar results were obtained in human embryonic stem cells. In addition to the inactive state of NF-κB, the deficiency in the inflammatory response in mouse embryonic stem cells is also attributed to the lack of functional receptors for LPS and TNF-α. In vitro differentiation can trigger the development of the inflammatory response mechanism, as indicated by the transition of NF-κB from its inactive to active state. However, a limited response to TNF-α and viral infection, but not to LPS, was observed in mouse embryonic stem cell–differentiated fibroblasts. We conclude that the inflammatory response mechanism is not active in mouse embryonic stem cells, and in vitro differentiation promotes only partial development of this mechanism. Together with our previous studies, the findings described in this article demonstrate that embryonic stem cells are fundamentally different from differentiated somatic cells in their innate immunity, which may have important implications in developmental biology, immunology, and embryonic stem cell–based regenerative medicine

    Antiviral Responses In Mouse Embryonic Stem Cells: Differential Development of Cellular Mechanisms In Type I Interferon Production and Response

    Get PDF
    We have recently reported that mouse embryonic stem cells (mESCs) are deficient in expressing type I interferons (IFNs) in response to viral infection and synthetic viral RNA analogs (Wang, R., Wang, J., Paul, A. M., Acharya, D., Bai, F., Huang, F., and Guo, Y. L. (2013) J. Biol. Chem. 288, 15926–15936). Here, we report that mESCs are able to respond to type I IFNs, express IFN-stimulated genes, and mediate the antiviral effect of type I IFNs against La Crosse virus and chikungunya virus. The major signaling components in the IFN pathway are expressed in mESCs. Therefore, the basic molecular mechanisms that mediate the effects of type I IFNs are functional in mESCs; however, these mechanisms may not yet be fully developed as mESCs express lower levels of IFN-stimulated genes and display weaker antiviral activity in response to type I IFNs when compared with fibroblasts. Further analysis demonstrated that type I IFNs do not affect the stem cell state of mESCs. We conclude that mESCs are deficient in type I IFN expression, but they can respond to and mediate the cellular effects of type I IFNs. These findings represent unique and uncharacterized properties of mESCs and are important for understanding innate immunity development and ESC physiology

    Mouse Embryonic Stem Cells Are Deficient in Type I Interferon Expression in Response to Viral Infections and Double-Stranded RNA

    Get PDF
    Embryonic stem cells (ESCs) are considered to be a promising cell source for regenerative medicine because of their unlimited capacity for self-renewal and differentiation. However, little is known about the innate immunity in ESCs and ESC-derived cells. We investigated the responses of mESCs to three types of live viruses; La Crosse virus (LACV), West Nile virus (WNV), and Sendai virus (SeV). Our results demonstrated mESCs were susceptible to viral infection, but they were unable to express type I interferons (IFNα and IFNβ,IFNα/β which differ from fibroblasts (10T1/2 cells) that robustly express IFNα/β upon viral infections. The failure of mESCs to express IFNα/β was further demonstrated by treatment with polyIC (polyinosinic-polycytidylic), a synthetic viral dsRNA analog that strongly induced IFNα/β in 10T1/2 cells. Although polyIC transiently inhibited the transcription of pluripotency markers, the stem cell morphology was not significantly affected. However, polyIC can induce dsRNA-activated protein kinase (PKR) in mESCs and this activation resulted in a strong inhibition of cell proliferation. We conclude that the cytosolic receptor PKR is functional, but the mechanisms that mediate type I IFN expression are deficient in mESCs. This conclusion is further supported by the findings that the major viral RNA receptors are either expressed at very low levels (TLR3 and MDA5) or may not be active (RIG-I) in mESCs

    Understanding the multi-scale structure and digestibility of different waxy maize starches

    Get PDF
    This work concerns different cultivars of waxy maize starch (WMS), from which a significant correlation between the multi-scale structure and the digestibility has been identified. WMSs show a typical A-type crystalline polymorph. The surface porosity of WMS granules facilitates their digestibility. In contrast, the in vitro digestion results indicate that the resistant starch (RS) content increased with higher contents of amylose, single helices, and surface short-range ordered structures. Resistant starch (RS) was found to be made up of single helices and perfect crystallites formed by the fraction of chains with a degree of polymerization (DP) between 13 and 24. Slowly digestible starch (SDS) consists of single helices. Rapidly digestible starch (RDS) is mainly composed of disordered molecular chains in the amorphous regions of starch. This work reveals the relationship between the multiscale structure and digestibility of different WMSs and can provide guidance for the application of WMSs in food or non-food fields
    corecore