33,481 research outputs found

    Pattern Synthesis of Dual-band Shared Aperture Interleaved Linear Antenna Arrays

    Get PDF
    This paper presents an approach to improve the efficiency of an array aperture by interleaving two different arrays in the same aperture area. Two sub-arrays working at different frequencies are interleaved in the same linear aperture area. The available aperture area is efficiently used. The element positions of antenna array are optimized by using Invasive Weed Optimization (IWO) to reduce the peak side lobe level (PSLL) of the radiation pattern. To overcome the shortness of traditional methods which can only fulfill the design of shared aperture antenna array working at the same frequency, this method can achieve the design of dual-band antenna array with wide working frequency range. Simulation results show that the proposed method is feasible and efficient in the synthesis of dual-band shared aperture antenna array

    Rumba : a Python framework for automating large-scale recursive internet experiments on GENI and FIRE+

    Get PDF
    It is not easy to design and run Convolutional Neural Networks (CNNs) due to: 1) finding the optimal number of filters (i.e., the width) at each layer is tricky, given an architecture; and 2) the computational intensity of CNNs impedes the deployment on computationally limited devices. Oracle Pruning is designed to remove the unimportant filters from a well-trained CNN, which estimates the filters’ importance by ablating them in turn and evaluating the model, thus delivers high accuracy but suffers from intolerable time complexity, and requires a given resulting width but cannot automatically find it. To address these problems, we propose Approximated Oracle Filter Pruning (AOFP), which keeps searching for the least important filters in a binary search manner, makes pruning attempts by masking out filters randomly, accumulates the resulting errors, and finetunes the model via a multi-path framework. As AOFP enables simultaneous pruning on multiple layers, we can prune an existing very deep CNN with acceptable time cost, negligible accuracy drop, and no heuristic knowledge, or re-design a model which exerts higher accuracy and faster inferenc

    An Architecture for Distributed Energies Trading in Byzantine-Based Blockchain

    Full text link
    With the development of smart cities, not only are all corners of the city connected to each other, but also connected from city to city. They form a large distributed network together, which can facilitate the integration of distributed energy station (DES) and corresponding smart aggregators. Nevertheless, because of potential security and privacy protection arisen from trustless energies trading, how to make such energies trading goes smoothly is a tricky challenge. In this paper, we propose a blockchain-based multiple energies trading (B-MET) system for secure and efficient energies trading by executing a smart contract we design. Because energies trading requires the blockchain in B-MET system to have high throughput and low latency, we design a new byzantine-based consensus mechanism (BCM) based on node's credit to improve efficiency for the consortium blockchain under the B-MET system. Then, we take combined heat and power (CHP) system as a typical example that provides distributed energies. We quantify their utilities, and model the interactions between aggregators and DESs in a smart city by a novel multi-leader multi-follower Stackelberg game. It is analyzed and solved by reaching Nash equilibrium between aggregators, which reflects the competition between aggregators to purchase energies from DESs. In the end, we conduct plenty of numerical simulations to evaluate and verify our proposed model and algorithms, which demonstrate their correctness and efficiency completely
    corecore