26 research outputs found

    DavarOCR: A Toolbox for OCR and Multi-Modal Document Understanding

    Full text link
    This paper presents DavarOCR, an open-source toolbox for OCR and document understanding tasks. DavarOCR currently implements 19 advanced algorithms, covering 9 different task forms. DavarOCR provides detailed usage instructions and the trained models for each algorithm. Compared with the previous opensource OCR toolbox, DavarOCR has relatively more complete support for the sub-tasks of the cutting-edge technology of document understanding. In order to promote the development and application of OCR technology in academia and industry, we pay more attention to the use of modules that different sub-domains of technology can share. DavarOCR is publicly released at https://github.com/hikopensource/Davar-Lab-OCR.Comment: Short paper, Accept by ACM MM202

    A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms

    No full text
    The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features

    Structural Low-Level Dynamic Response Analysis Using Deviations of Idealized Edge Profiles and Video Acceleration Magnification

    No full text
    The development of high-speed camera systems and image processing techniques has promoted the use of vision-based methods as a practical alternative for the analysis of non-contact structural dynamic responses. In this study, a deviation extraction method is introduced to obtain deviation signals from structural idealized edge profiles. Given that the deviation temporal variations can reflect the structural vibration characteristics, a method based on singular-value decomposition (SVD) is proposed to extract valuable vibration signals from the matrix composed of deviations from all video frames. However, this method exhibits limitations when handling low-level motions that reflect high-frequency vibration components. Hence, a video acceleration magnification algorithm is employed to enhance low-level deviation variations before the extraction. The enhancement of low-level deviation variations is validated by a light-weight cantilever beam experiment and a noise barrier field test. From the extracted waveforms and their spectrums from the original and magnified videos, subtle deviations of the selected straight-line edge profiles are magnified in the reconstructed videos, and low-level high-frequency vibration signals are successfully enhanced in the final extraction results. Vibration characteristics of the test beam and the noise barrier are then analyzed using signals obtained by the proposed method

    In Situ Measurement of Wind-Induced Pulse Response of Sound Barrier Based on High-Speed Imaging Technology

    No full text
    The lifetime of the sound barrier is threatened by high-speed train-induced impulsive wind pressure as it passes by. The vibration response of the sound barrier during the process of train passing is difficult to be measured using conventional measurement methods because of the inconvenience of the installation of markers on the sound barrier. In this paper, the high-speed camera is used to record the whole process of the train passing by the sound barrier. Then, a displacement extraction algorithm based on the theory of Taylor expansion is proposed to obtain the vibration response curve. Compared with the result simulated by using the finite element method, the video extraction result shows the same head wave and tail wave phenomenon, demonstrating that the vibration measurement by using the high-speed imaging technology is an effective measuring way. It can achieve noncontact and remote vibration measurement and has important practical value

    Review on Computer Aided Weld Defect Detection from Radiography Images

    No full text
    The weld defects inspection from radiography films is critical for assuring the serviceability and safety of weld joints. The various limitations of human interpretation made the development of innovative computer-aided techniques for automatic detection from radiography images an interest point of recent studies. The studies of automatic defect inspection are synthetically concluded from three aspects: pre-processing, defect segmentation and defect classification. The achievement and limitations of traditional defect classification method based on the feature extraction, selection and classifier are summarized. Then the applications of novel models based on learning(especially deep learning) were introduced. Finally, the achievement of automation methods were discussed and the challenges of current technology are presented for future research for both weld quality management and computer science researchers
    corecore