22 research outputs found

    Meshing Deforming Spacetime for Visualization and Analysis

    Full text link
    We introduce a novel paradigm that simplifies the visualization and analysis of data that have a spatially/temporally varying frame of reference. The primary application driver is tokamak fusion plasma, where science variables (e.g., density and temperature) are interpolated in a complex magnetic field-line-following coordinate system. We also see a similar challenge in rotational fluid mechanics, cosmology, and Lagrangian ocean analysis; such physics implies a deforming spacetime and induces high complexity in volume rendering, isosurfacing, and feature tracking, among various visualization tasks. Without loss of generality, this paper proposes an algorithm to build a simplicial complex -- a tetrahedral mesh, for the deforming 3D spacetime derived from two 2D triangular meshes representing consecutive timesteps. Without introducing new nodes, the resulting mesh fills the gap between 2D meshes with tetrahedral cells while satisfying given constraints on how nodes connect between the two input meshes. In the algorithm we first divide the spacetime into smaller partitions to reduce complexity based on the input geometries and constraints. We then independently search for a feasible tessellation of each partition taking nonconvexity into consideration. We demonstrate multiple use cases for a simplified visualization analysis scheme with a synthetic case and fusion plasma applications

    Characterization of particle number concentrations and PM2.5 in a school: influence of outdoor air pollution on indoor air

    Get PDF
    Background, Aim and Scope The impact of air pollution on school children’s health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract. Materials and methods In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM2.5), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air. Results For outdoor PN and PM2.5, early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM2.5 and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM2.5 level was mainly affected by the outdoor PM2.5 (r = 0.68, p<0.01), whereas the indoor PN concentration had some association with outdoor PN values (r = 0.66, p<0.01) even though the indoor PN concentration was occasionally influenced by indoor sources, such as cooking, cleaning and floor polishing activities. Correlation analysis indicated that the outdoor PM2.5 was inversely correlated with the indoor to outdoor PM2.5 ratio (I/O ratio) (r = -0.49, p<0.01), while the indoor PN had a weak correlation with the I/O ratio for PN (r = 0.34, p<0.01). Discussion and Conclusions The results showed that occupancy did not cause any major changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100 – 400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM2.5 was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles. Recommendations and Perspectives The findings obtained in this study are useful for epidemiological studies to estimate the total personal exposure of children, and to develop appropriate control strategies for minimizing the adverse health effects on school children

    Airline Overbooking Problem with Uncertain No-Shows

    Get PDF

    Outer retinal circular structures in patients with Bietti crystalline retinopathy.

    Get PDF
    [Background] : Bietti crystalline retinopathy (BCR) is a distinct retinal degenerative disease characterised by retinal degeneration with many yellow–white crystals located mainly at the posterior pole area. Using spectral domain-optical coherence tomography (SD-OCT), the structural change in retina was investigated. [Methods] : Patients diagnosed with BCR (n=12), retinitis pigmentosa (RP, n=292) and cone dystrophy (n=16) were included in this study. The authors mainly examined fundus photographs and SD-OCT, infrared and fundus autofluorescence images of these patients. [Results]: Crystalline deposits were detected in portions of the retinal pigment epithelium that lacked patchy degenerated lesions. SD-OCT revealed that most of the observed crystalline deposits were located adjacent to the inner side of retinal pigment epithelium layer. The change most frequently observed was circular hyper-refractive structures in the outer nuclear layer. Although the structures were considered to be previously reported “tubular formation” or “tubular degeneration”, we determined that many of these circular structures were slices of spherical structures and were typically noted in areas suspected of ongoing active degeneration. [Conclusion] : BCR has characteristic structures in the outer nuclear layer. Although the incidence of the structure varies, it may be characteristic of retinal degeneration and can be found in many retinal degenerative diseases

    Analysis of Circulating Tumor Cells in Ovarian Cancer and Their Clinical Value as a Biomarker

    Get PDF
    Background/Aims: Monitoring the appearance and progression of tumors are important for improving the survival rate of patients with ovarian cancer. This study aims to examine circulating tumor cells (CTCs) in epithelial ovarian cancer (EOC) patients to evaluate their clinical significance in comparison to the existing biomarker CA125. Methods: Immuomagnetic bead screening, targeting epithelial antigens on ovarian cancer cells, combined with multiplex reverse transcriptase-polymerase chain reaction (Multiplex RT-PCR) was used to detect CTCs in 211 samples of peripheral blood (5 ml) from 109 EOC patients. CTCs and CA125 were measured in serial from 153 blood and 153 serum samples from 51 patients and correlations with treatment were analyzed. Immunohistochemistry was used to detect the expression of tumor-associated proteins in tumor tissues and compared with gene expression in CTCs from patients. Results: CTCs were detected in 90% (98/109) of newly diagnosed patients. In newly diagnosed patients, the number of CTCs was correlated with stage (p=0.034). Patients with stage IA-IB disease had a CTC positive rate of 93% (13/14), much higher than the CA125 positive rate of only 64% (9/14) for the same patients. The numbers of CTCs changed with treatment, and the expression of EpCAM (p=0.003) and HER2 (p=0.035) in CTCs was correlated with resistance to chemotherapy. Expression of EpCAM in CTCs before treatment was also correlated with overall survival (OS) (p=0.041). Conclusion: Detection of CTCs allows early diagnose and expression of EpCAM in CTC positive patients predicts prognosis and should be helpful for monitoring treatment

    ccr2遺伝子のノックアウトは網膜色素変性モデルマウスでの視細胞変性を軽減する

    Get PDF
    Final publication is available at http://dx.doi.org/10.1016/j.exer.2012.08.013. Congrong Guo, Atsushi Otani, Akio Oishi, Hiroshi Kojima, Yukiko Makiyama, Satoko Nakagawa, Nagahisa Yoshimura, Knockout of ccr2 alleviates photoreceptor cell death in a model of retinitis pigmentosa, Experimental Eye Research, Volume 104, November 2012, Pages 39-47, ISSN 0014-4835京都大学0048新制・課程博士博士(医学)甲第18680号医博第3952号新制||医||1007(附属図書館)31613京都大学大学院医学研究科医学専攻(主査)教授 長澤 丘司, 教授 伊藤 壽一, 教授 長田 重一学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDFA

    Impact of ventilation scenario on air exchange rates and on indoor particle number concentrations in an air-conditioned classroom

    Get PDF
    A two-week intensive measurement campaign of indoor and outdoor air pollution was carried out in September 2006, in a primary school to investigate indoor-outdoor correlations of particle number concentrations (PN), and the impact of air exchange rate (ACH) on the indoor PN concentration. The ACHs in the classroom for different conditions associated with window opening and the operational status of air conditioners (A/C) and fans were tested. As expected, the lowest ACH (0.12 h-1) was found when the windows were closed and A/C and fans were off. In contrast, the highest ACH (7.92 h-1) was observed when the windows were opened and A/C and fans were all on. The analysis of the PN I/O ratios at different ACHs in the absence of indoor sources indicates that the mean I/O ratio was 0.621 ± 0.007 (mean ± 95% confidence interval) when the windows were closed, and A/C and fans were off; 0.524 ± 0.023 when windows were closed, fans were off and A/C was on; and 0.502 ± 0.029 when windows were closed, A/C was off and fans were on. To further understand the relationship between indoor and outdoor PN concentrations, the impact of outdoor PN concentration on I/O ratios at different ACHs was investigated. It was found that the relationship between outdoor PN concentration and the I/O ratio at different ACHs followed a power trendline with an equation of I/O ratio = A*PNout-b (A and b are coefficients, PNout is outdoor PN concentration), suggesting that the penetration efficiency decreased with increasing outdoor PN concentration. It is the first time we found that when the outdoor PN concentration increased there was an associated increase in the concentration of nano-particles, which have been demonstrated to have higher deposition rates and lower penetration efficiencies. Based on the above equation, the study also showed a significant effect of ACH on indoor PN concentrations under stable outdoor PN concentrations. In general, the higher the ACH was, the lower the indoor PN concentration was

    An investigation on particle emission from a new laser printer using an environmental chamber

    No full text
    In this study, emissions of ultrafine particles from a new laser printer were evaluated as a function of toner coverage, number of pages printed, fuser temperature and cartridge rotation during different printing orders. Eight combinations of printing jobs were specifically designed to represent eight printing orders. The toner coverage was found to be an important factor affecting particle emissions from the printer. The printing job without toner coverage (0%) acted as a cleaning process, which would tentatively reduce particle emissions in the next job. Particles generated in printing job with toner coverage (5%) could superimpose onto those emitted from the next job, leading to higher particle number emission in the next job than the previous one. Apart from toner coverage, cartridge rotation was an important factor enhancing particle emissions. Cartridge in rotation mode with/without toner coverage could both cause particle emissions and high fuser temperature. The relationship between the particle emission and the temperature of the fuser unit was very strong ( r2 = 0.96). The regression relationship satisfied a positive power law-rise equation. We also found that ventilation for a long period, printing with no cartridge rotation, and/or printing blank pages before toner page printing could reduce particle emissions. </jats:p
    corecore