8,986 research outputs found
The impact of complex informative missingness on the validity of the transmission/disequilibrium test (TDT)
The transmission/disequilibrium test was introduced to test for linkage and association between a marker and a putative disease locus using case-parent triads. Several extensions have been proposed to accommodate incomplete triads. Some strategies assumed that parental genotypes were missing completely at random and some methods allowed informative missingness for parental genotypes. However, the above tests assumed that offspring genotypes were missing completely at random and concluded that the transmission/disequilibrium test remained a valid test by excluding incomplete triads from the analysis. In this article, the conditional distribution of ascertained triads allowing informative missingness for offspring genotypes, as well as their parental genotypes, was derived and several tests under such scenarios were evaluated. In simulations, independent triads from the Genetic Analysis Workshop 15 simulated data (Problem 3) was ascertained. When offspring genotypes were missing informatively, simulation results revealed inflated type I error and/or reduced power for the transmission/disequilibrium test excluding incomplete triads
Semantic Image Synthesis via Adversarial Learning
In this paper, we propose a way of synthesizing realistic images directly
with natural language description, which has many useful applications, e.g.
intelligent image manipulation. We attempt to accomplish such synthesis: given
a source image and a target text description, our model synthesizes images to
meet two requirements: 1) being realistic while matching the target text
description; 2) maintaining other image features that are irrelevant to the
text description. The model should be able to disentangle the semantic
information from the two modalities (image and text), and generate new images
from the combined semantics. To achieve this, we proposed an end-to-end neural
architecture that leverages adversarial learning to automatically learn
implicit loss functions, which are optimized to fulfill the aforementioned two
requirements. We have evaluated our model by conducting experiments on
Caltech-200 bird dataset and Oxford-102 flower dataset, and have demonstrated
that our model is capable of synthesizing realistic images that match the given
descriptions, while still maintain other features of original images.Comment: Accepted to ICCV 201
Easing Embedding Learning by Comprehensive Transcription of Heterogeneous Information Networks
Heterogeneous information networks (HINs) are ubiquitous in real-world
applications. In the meantime, network embedding has emerged as a convenient
tool to mine and learn from networked data. As a result, it is of interest to
develop HIN embedding methods. However, the heterogeneity in HINs introduces
not only rich information but also potentially incompatible semantics, which
poses special challenges to embedding learning in HINs. With the intention to
preserve the rich yet potentially incompatible information in HIN embedding, we
propose to study the problem of comprehensive transcription of heterogeneous
information networks. The comprehensive transcription of HINs also provides an
easy-to-use approach to unleash the power of HINs, since it requires no
additional supervision, expertise, or feature engineering. To cope with the
challenges in the comprehensive transcription of HINs, we propose the HEER
algorithm, which embeds HINs via edge representations that are further coupled
with properly-learned heterogeneous metrics. To corroborate the efficacy of
HEER, we conducted experiments on two large-scale real-words datasets with an
edge reconstruction task and multiple case studies. Experiment results
demonstrate the effectiveness of the proposed HEER model and the utility of
edge representations and heterogeneous metrics. The code and data are available
at https://github.com/GentleZhu/HEER.Comment: 10 pages. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, London, United Kingdom,
ACM, 201
- …