9 research outputs found

    A Multi-Threading Algorithm for Constrained Path Optimization Problem on Road Networks

    Full text link
    The constrained path optimization (CPO) problem takes the following input: (a) a road network represented as a directed graph, where each edge is associated with a "cost" and a "score" value; (b) a source-destination pair and; (c) a budget value, which denotes the maximum permissible cost of the solution. Given the input, the goal is to determine a path from source to destination, which maximizes the "score" while constraining the total "cost" of the path to be within the given budget value. CPO problem has applications in urban navigation. However, the CPO problem is computationally challenging as it can be reduced to an instance of the arc orienteering problem, which is known to be NP-hard. The current state-of-the-art algorithms for this problem are essentially serial in nature and cannot take full advantage (i.e., achieve good load balance) of the increasingly available multi-core systems to solve a CPO query. Our proposed parallel algorithm (with its intelligent task-assignment scheme) achieves both superior solution quality and very low execution times (via good load balancing). Moreover, our approach is also able to demonstrate an almost linear speed-up with an increase in the number of cores.Comment: 10 pages, 14 figures, accepted as a short paper in the 23rd International Conference on Web Information Systems Engineerin

    Load Balanced Demand Distribution under Overload Penalties

    Full text link
    Input to the Load Balanced Demand Distribution (LBDD) consists of the following: (a) a set of public service centers (e.g., schools); (b) a set of demand (people) units and; (c) a cost matrix containing the cost of assignment for all demand unit-service center pairs. In addition, each service center is also associated with a notion of capacity and a penalty which is incurred if it gets overloaded. Given the input, the LBDD problem determines a mapping from the set of demand units to the set of service centers. The objective is to determine a mapping that minimizes the sum of the following two terms: (i) the total assignment cost between demand units and their allotted service centers and, (ii) total of penalties incurred. The problem of LBDD finds its application in the domain of urban planning. An instance of the LBDD problem can be reduced to an instance of the min-cost bi-partite matching problem. However, this approach cannot scale up to the real world large problem instances. The current state of the art related to LBDD makes simplifying assumptions such as infinite capacity or total capacity being equal to the total demand. This paper proposes a novel allotment subspace re-adjustment based approach (ASRAL) for the LBDD problem. We analyze ASRAL theoretically and present its asymptotic time complexity. We also evaluate ASRAL experimentally on large problem instances and compare with alternative approaches. Our results indicate that ASRAL is able to scale-up while maintaining significantly better solution quality over the alternative approaches. In addition, we also extend ASRAL to para-ASRAL which uses the GPU and CPU cores to speed-up the execution while maintaining the same solution quality as ASRAL.Comment: arXiv admin note: text overlap with arXiv:2009.0176

    Spatio-temporal graph data analytics

    No full text

    Spatio-Temporal Graph Data Analytics

    No full text
    This book highlights some of the unique aspects of spatio-temporal graph data from the perspectives of modeling and developing scalable algorithms. The authors discuss in the first part of this book, the semantic aspects of spatio-temporal graph data in two application domains, viz., urban transportation and social networks. Then the authors present representational models and data structures, which can effectively capture these semantics, while ensuring support for computationally scalable algorithms.In the first part of the book, the authors describe algorithmic development issues in spatio-temporal graph data. These algorithms internally use the semantically rich data structures developed in the earlier part of this book. Finally, the authors introduce some upcoming spatio-temporal graph datasets, such as engine measurement data, and discuss some open research problems in the area

    Spatiotemporal Data Mining: A Computational Perspective

    Get PDF
    Explosive growth in geospatial and temporal data as well as the emergence of new technologies emphasize the need for automated discovery of spatiotemporal knowledge. Spatiotemporal data mining studies the process of discovering interesting and previously unknown, but potentially useful patterns from large spatiotemporal databases. It has broad application domains including ecology and environmental management, public safety, transportation, earth science, epidemiology, and climatology. The complexity of spatiotemporal data and intrinsic relationships limits the usefulness of conventional data science techniques for extracting spatiotemporal patterns. In this survey, we review recent computational techniques and tools in spatiotemporal data mining, focusing on several major pattern families: spatiotemporal outlier, spatiotemporal coupling and tele-coupling, spatiotemporal prediction, spatiotemporal partitioning and summarization, spatiotemporal hotspots, and change detection. Compared with other surveys in the literature, this paper emphasizes the statistical foundations of spatiotemporal data mining and provides comprehensive coverage of computational approaches for various pattern families. ISPRS Int. J. Geo-Inf. 2015, 4 2307 We also list popular software tools for spatiotemporal data analysis. The survey concludes with a look at future research needs

    Dynamic Transportation Navigation

    No full text
    corecore