866 research outputs found

    WaVPeak: picking NMR peaks through wavelet-based smoothing and volume-based filtering

    Get PDF
    Motivation: Nuclear magnetic resonance (NMR) has been widely used as a powerful tool to determine the 3D structures of proteins in vivo. However, the post-spectra processing stage of NMR structure determination usually involves a tremendous amount of time and expert knowledge, which includes peak picking, chemical shift assignment and structure calculation steps. Detecting accurate peaks from the NMR spectra is a prerequisite for all following steps, and thus remains a key problem in automatic NMR structure determination

    Empirical Potential Function for Simplified Protein Models: Combining Contact and Local Sequence-Structure Descriptors

    Full text link
    An effective potential function is critical for protein structure prediction and folding simulation. Simplified protein models such as those requiring only CαC_\alpha or backbone atoms are attractive because they enable efficient search of the conformational space. We show residue specific reduced discrete state models can represent the backbone conformations of proteins with small RMSD values. However, no potential functions exist that are designed for such simplified protein models. In this study, we develop optimal potential functions by combining contact interaction descriptors and local sequence-structure descriptors. The form of the potential function is a weighted linear sum of all descriptors, and the optimal weight coefficients are obtained through optimization using both native and decoy structures. The performance of the potential function in test of discriminating native protein structures from decoys is evaluated using several benchmark decoy sets. Our potential function requiring only backbone atoms or CαC_\alpha atoms have comparable or better performance than several residue-based potential functions that require additional coordinates of side chain centers or coordinates of all side chain atoms. By reducing the residue alphabets down to size 5 for local structure-sequence relationship, the performance of the potential function can be further improved. Our results also suggest that local sequence-structure correlation may play important role in reducing the entropic cost of protein folding.Comment: 20 pages, 5 figures, 4 tables. In press, Protein

    Solution structure of the N-terminal dsRBD of Drosophila ADAR and interaction studies with RNA

    Get PDF
    Adenosine deaminases that act on RNA (ADAR) catalyze adenosine to inosine (A-to-I) editing in double-stranded RNA (dsRNA) substrates. Inosine is read as guanosine by the translation machinery; therefore A-to-I editing events in coding sequences may result in recoding genetic information. Whereas vertebrates have two catalytically active enzymes, namely ADAR1 and ADAR2, Drosophila has a single ADAR protein (dADAR) related to ADAR2. The structural determinants controlling substrate recognition and editing of a specific adenosine within dsRNA substrates are only partially understood. Here, we report the solution structure of the N-terminal dsRNA binding domain (dsRBD) of dADAR and use NMR chemical shift perturbations to identify the protein surface involved in RNA binding. Additionally, we show that Drosophila ADAR edits the R/G site in the mammalian GluR-2 pre-mRNA which is naturally modified by both ADAR1 and ADAR2. We then constructed a model showing how dADAR dsRBD1 binds to the GluR-2 R/G stem-loop. This model revealed that most side chains interacting with the RNA sugar-phosphate backbone need only small displacement to adapt for dsRNA binding and are thus ready to bind to their dsRNA target. It also predicts that dADAR dsRBD1 would bind to dsRNA with less sequence specificity than dsRBDs of ADAR2. Altogether, this study gives new insights into dsRNA substrate recognition by Drosophila ADAR

    Structural Similarity between β3-Peptides Synthesized from β3-Homo-amino Acids or L-Aspartic Acid Monomers

    Get PDF
    Formation of stable secondary structures by oligomers that mimic natural peptides is a key asset for enhanced biological response. Here we show that oligomeric β3‐hexapeptides synthesized from l‐aspartic acid monomers (β3‐peptides 1, 5a, and 6) or homologated β3‐amino acids (β3‐peptide 2), fold into similar stable 14‐helical secondary structures in solution, except that the former form right‐handed 14‐helix and the later form left‐handed 14‐helix. β3‐Peptides from l‐Asp monomers contain an additional amide bond in the side chains that provides opportunities for more hydrogen bonding. However, based on the NMR solution structures, we found that β3‐peptide from l‐Asp monomers (1) and from homologated amino acids (2) form similar structures with no additional side‐chain interactions. These results suggest that the β3‐peptides derived from l‐Asp are promising peptide‐mimetics that can be readily synthesized using l‐Asp monomers as well as the right‐handed 14‐helical conformation of these β3‐peptides (such as 1 and 6) may prove beneficial in the design of mimics for right‐handed α‐helix of α‐peptides

    Solution structure of stem-loop α of the hepatitis B virus post-transcriptional regulatory element

    Get PDF
    Chronic hepatitis B virus (HBV) infections may lead to severe diseases like liver cirrhosis or hepatocellular carcinoma (HCC). The HBV post-transcriptional regulatory element (HPRE) facilitates the nuclear export of unspliced viral mRNAs, contains a splicing regulatory element and resides in the 3′-region of all viral transcripts. The HPRE consists of three sub-elements α (nucleotides 1151–1346), β1 (nucleotides 1347–1457) and β2 (nucleotides 1458–1582), which confer together full export competence. Here, we present the NMR solution structure (pdb 2JYM) of the stem-loop α (SLα, nucleotides 1292–1321) located in the sub-element α. The SLα contains a CAGGC pentaloop highly conserved in hepatoviruses, which essentially adopts a CUNG-like tetraloop conformation. Furthermore, the SLα harbours a single bulged G residue flanked by A-helical regions. The structure is highly suggestive of serving two functions in the context of export of unspliced viral RNA: binding sterile alpha motif (SAM-) domain containing proteins and/or preventing the utilization of a 3′-splice site contained within SLα

    Novel dimeric structure of phage ϕ29-encoded protein p56: insights into uracil-DNA glycosylase inhibition

    Get PDF
    Protein p56 encoded by the Bacillus subtilis phage ϕ29 inhibits the host uracil-DNA glycosylase (UDG) activity. To get insights into the structural basis for this inhibition, the NMR solution structure of p56 has been determined. The inhibitor defines a novel dimeric fold, stabilized by a combination of polar and extensive hydrophobic interactions. Each polypeptide chain contains three stretches of anti-parallel β-sheets and a helical region linked by three short loops. In addition, microcalorimetry titration experiments showed that it forms a tight 2:1 complex with UDG, strongly suggesting that the dimer represents the functional form of the inhibitor. This was further confirmed by the functional analysis of p56 mutants unable to assemble into dimers. We have also shown that the highly anionic region of the inhibitor plays a significant role in the inhibition of UDG. Thus, based on these findings and taking into account previous results that revealed similarities between the association mode of p56 and the phage PBS-1/PBS-2-encoded inhibitor Ugi with UDG, we propose that protein p56 might inhibit the enzyme by mimicking its DNA substrate

    Solution and crystal structures of a C-terminal fragment of the neuronal isoform of the polypyrimidine tract binding protein (nPTB)

    Get PDF
    The eukaryotic polypyrimidine tract binding protein (PTB) serves primarily as a regulator of alternative splicing of messenger RNA, but is also co-opted to other roles such as RNA localisation and translation initiation from internal ribosome entry sites. The neuronal paralogue of PTB (nPTB) is 75% identical in amino acid sequence with PTB. Although the two proteins have broadly similar RNA binding specificities and effects on RNA splicing, differential expression of PTB and nPTB can lead to the generation of alternatively spliced mRNAs. RNA binding by PTB and nPTB is mediated by four RNA recognition motifs (RRMs). We present here the crystal and solution structures of the C-terminal domain of nPTB (nPTB34) which contains RRMs 3 and 4. As expected the structures are similar to each other and to the solution structure of the equivalent fragment from PTB (PTB34). The result confirms that, as found for PTB, RRMs 3 and 4 of nPTB interact with one another to form a stable unit that presents the RNA-binding surfaces of the component RRMs on opposite sides that face away from each other. The major differences between PTB34 and nPTB34 arise from amino acid side chain substitutions on the exposed β-sheet surfaces and adjoining loops of each RRM, which are likely to modulate interactions with RNA

    The eNMR platform for structural biology

    Get PDF
    The e-NMR project is a European cooperation initiative that aims at providing the bio-NMR user community with a software platform integrating and streamlining the computational approaches necessary for the analysis of bio-NMR data. The e-NMR platform is based on a Grid computational infrastructure. A main focus of the current implementation of the e-NMR platform is on streamlining structure determination protocols. Indeed, to facilitate the use of NMR spectroscopy in the life sciences, the eNMR consortium has set out to provide protocolized services through easy-to-use web interfaces, while still retaining sufficient flexibility to handle specific requests by expert users. Various programs relevant for structural biology applications are already available through the e-NMR portal, including HADDOCK, XPLOR-NIH, CYANA and csRosetta. The implementation of these services, and in particular the distribution of calculations to the GRID infrastructure, has required the development of specific tools. However, the GRID infrastructure is maintained completely transparent to the users. With more than 150 registered users, eNMR is currently the second largest European Virtual Organization in the life sciences
    corecore