2 research outputs found

    Electron Density and Dielectric Properties of Highly Porous MOFs: Binding and Mobility of Guest Molecules in Cu3(BTC)2 and Zn3(BTC)2

    Get PDF
    Two isostructural highly porous metal-organic frameworks, the well-known Cu3(BTC)2 n (BTC = 1,3,5-benzenetricarboxylate), often appointed with the name HKUST-1, and Zn3(BTC)2 n, have been investigated as models for the buildup of dielectric properties, differentiating the role of chemi- and physisorbed guest molecules and that of specific intraframework and framework-guest linkages. For this purpose, electron charge density analysis, impedance spectroscopy, density functional theory simulations, and atomic partitioning of the polarizabilities have been exploited. These analyses at different degrees of pores filling enabled one to observe structural and electronic changes induced by guest molecules, especially when chemisorbed. The electrostatic potential inside the pores allows one to describe the absorption mechanism and to estimate the polarization of guests induced by the framework. The dielectric constant shows very diverse frequency dependence and magnitude of real and imaginary components as a consequence of (I) capture of guest molecules in the pores during synthesis, (II) MOF activation, and (III) water absorption from the atmosphere after activation. Comparison with calculated static-dielectric constant and atomic polarizabilities of the material has allowed for evaluating building blocks' contribution to the overall property, paving the way for reverse crystal engineering of these species

    Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity

    No full text
    Correlating the catalyst activity, selectivity, and stability with its structure and composition is of the utmost importance in advancing the knowledge of heterogeneous electrocatalytic processes for chemical energy conversion. Well-defined colloidal nanocrystals with tunable monodisperse size and uniform shapes are ideal platforms to investigate the effect of these parameters on the catalytic performance. In addition to translating the knowledge from single-crystal studies to more realistic conditions, the morphological and compositional complexity attainable by colloidal chemistry can provide access to active catalysts which cannot be produced by other synthetic approaches. The sample uniformity is also beneficial to investigate catalyst reconstruction processes via both ex situ and operando techniques. Finally, colloidal nanocrystals are obtained as inks, a feature which facilitates their integration on different substrates and cell configurations to study the impact of interactions at the mesoscale and the device-dependent reaction microenvironment on the catalytic outcome. In this Review, we discuss recent studies in selected electrochemical reactions and provide our outlook on future developments on the use of well-defined colloidal nanocrystals as an emerging class of electrocatalysts
    corecore