2 research outputs found

    Tissue Glucocorticoid Metabolism in Adrenal Insufficiency:A Prospective Study of Dual-release Hydrocortisone Therapy

    Get PDF
    Background: Patients with adrenal insufficiency (AI) require life-long glucocorticoid (GC) replacement therapy. Within tissues, cortisol (F) availability is under the control of the isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD). We hypothesize that corticosteroid metabolism is altered in patients with AI because of the nonphysiological pattern of current immediate release hydrocortisone (IR-HC) replacement therapy. The use of a once-daily dual-release hydrocortisone (DR-HC) preparation, (Plenadren®), offers a more physiological cortisol profile and may alter corticosteroid metabolism in vivo.Study Design and Methods: Prospective crossover study assessing the impact of 12 weeks of DR-HC on systemic GC metabolism (urinary steroid metabolome profiling), cortisol activation in the liver (cortisone acetate challenge test), and subcutaneous adipose tissue (microdialysis, biopsy for gene expression analysis) in 51 patients with AI (primary and secondary) in comparison to IR-HC treatment and age- and BMI-matched controls.Results: Patients with AI receiving IR-HC had a higher median 24-hour urinary excretion of cortisol compared with healthy controls (72.1 µg/24 hours [IQR 43.6-124.2] vs 51.9 µg/24 hours [35.5-72.3], P = .02), with lower global activity of 11β-HSD2 and higher 5-alpha reductase activity. Following the switch from IR-HC to DR-HC therapy, there was a significant reduction in urinary cortisol and total GC metabolite excretion, which was most significant in the evening. There was an increase in 11β-HSD2 activity. Hepatic 11β-HSD1 activity was not significantly altered after switching to DR-HC, but there was a significant reduction in the expression and activity of 11β-HSD1 in subcutaneous adipose tissue.Conclusion: Using comprehensive in vivo techniques, we have demonstrated abnormalities in corticosteroid metabolism in patients with primary and secondary AI receiving IR-HC. This dysregulation of pre-receptor glucocorticoid metabolism results in enhanced glucocorticoid activation in adipose tissue, which was ameliorated by treatment with DR-HC

    A cross-sectional study demonstrating increased serum amyloid A-related inflammation in high density lipoproteins from subjects with type 1 diabetes mellitus and how this association was augmented by poor glycaemic control

    Get PDF
    Inflammatory atherosclerosis is increased in subjects with type 1 diabetes mellitus (T1DM). Normally high-density lipoproteins (HDL) protect against atherosclerosis; however, in the presence of serum amyloid-A- (SAA-) related inflammation this property may be reduced. Fasting blood was obtained from fifty subjects with T1DM, together with fifty age, gender and BMI matched control subjects. HDL was subfractionated into HDL2 and HDL3 by rapid ultracentrifugation. Serum-hsCRP and serum-, HDL2-, and HDL3-SAA were measured by ELISAs. Compared to control subjects, SAA was increased in T1DM subjects, nonsignificantly in serum (P=0.088), and significantly in HDL2(P=0.003) and HDL3(P=0.005). When the T1DM group were separated according to mean HbA1c (8.34%), serum-SAA and HDL3-SAA levels were higher in the T1DM subjects with HbA1c ≥ 8.34%, compared to when HbA1c was <8.34% (P<0.05). Furthermore, regression analysis illustrated, that for every 1%-unit increase in HbA1c, SAA increased by 20% and 23% in HDL2 and HDL3, respectively, independent of BMI. HsCRP did not differ between groups (P>0.05). This cross-sectional study demonstrated increased SAA-related inflammation in subjects with T1DM that was augmented by poor glycaemic control. We suggest that SAA is a useful inflammatory biomarker in T1DM, which may contribute to their increased atherosclerosis risk
    corecore