10 research outputs found

    The electron affinity of tellurium

    Get PDF
    The electron affinity of tellurium has been determined to 1.970 876(7) eV. The threshold for photodetachment of Te^-(^{2} P_{3/2}) forming neutral Te in the ground state was investigated by measuring the total photodetachment cross section using a collinear laser-ion beam geometry. The electron affinity was obtained from a fit to the Wigner law in the threshold region.Comment: 4 pages,4 figures,18 reference

    Photodetachment study of the 1s3s4s ^4S resonance in He^-

    Get PDF
    A Feshbach resonance associated with the 1s3s4s ^{4}S state of He^{-} has been observed in the He(1s2s ^{3}S) + e^- (\epsilon s) partial photodetachment cross section. The residual He(1s2s ^{3}S) atoms were resonantly ionized and the resulting He^+ ions were detected in the presence of a small background. A collinear laser-ion beam apparatus was used to attain both high resolution and sensitivity. We measured a resonance energy E_r = 2.959 255(7) eV and a width \Gamma = 0.19(3) meV, in agreement with a recent calculation.Comment: LaTeX article, 4 pages, 3 figures, 21 reference

    Electron affinity of Li: A state-selective measurement

    Get PDF
    We have investigated the threshold of photodetachment of Li^- leading to the formation of the residual Li atom in the 2p2P2p ^2P state. The excited residual atom was selectively photoionized via an intermediate Rydberg state and the resulting Li^+ ion was detected. A collinear laser-ion beam geometry enabled both high resolution and sensitivity to be attained. We have demonstrated the potential of this state selective photodetachment spectroscopic method by improving the accuracy of Li electron affinity measurements an order of magnitude. From a fit to the Wigner law in the threshold region, we obtained a Li electron affinity of 0.618 049(20) eV.Comment: 5 pages,6 figures,22 reference

    Photodetachment Studies of Negative Ion Structure

    No full text
    The structure of atomic negative ions has been investigated experimentally by studying photodetachment, which is the process of photon-induced electron emission from a negative ion. The interaction between the valence electrons and the nucleus is weaker in negative ions than in atoms and positive ions. Therefore, atomic negative ions are fragile systems and their binding energy is sensitive to electron-electron correlation. Quasi-bound doubly excited states are particularly sensitive to this correlation. A collinear laser-ion beam apparatus has been used to obtain a high sensitivity in combination with high energy-resolution. Total cross sections have been measured by detecting the residual atom created in the photodetachment process. A scheme for state-selective detection of the residual atom, based on resonance ionization spectroscopy (RIS), has been developed for measurements of partial cross sections. Further, a newly developed time-of-flight spectrometer has been used for energy-resolved detection of electrons ejected in the photodetachment process. The accuracies of the electron affinities of Li and Te have been improved and all fine structure splittings of the As- ground state have been determined for the first time. Quasi-bound doubly excited states have been investigated by observing resonance structures in photodetachment spectra. Energies and widths of the resonances have been extracted from the measured cross sections. The high resolution and sensitivity of the apparatus, in combination with state-selective detection, have been necessary for these investigations. Resonance structures, associated with doubly excited states in Li- have been observed below the photodetachment thresholds corresponding to the 3p, 4p, 6p, and 7p states of the Li atom. Doubly excited states have also been investigated in Na- below the Na(4d) threshold and in He- below the He(n=3) thresholds. Photodetachment of C- has been studied in the vicinity of the C(2s2p3 5S) threshold, in the search for predicted doubly excited states, but no evidence of resonance structure was found. Measured cross sections and resonance parameters have been compared with recent calculations and have stimulated further theoretical investigations

    Photodetachment Studies of Negative Ion Structure

    No full text
    The structure of atomic negative ions has been investigated experimentally by studying photodetachment, which is the process of photon-induced electron emission from a negative ion. The interaction between the valence electrons and the nucleus is weaker in negative ions than in atoms and positive ions. Therefore, atomic negative ions are fragile systems and their binding energy is sensitive to electron-electron correlation. Quasi-bound doubly excited states are particularly sensitive to this correlation. A collinear laser-ion beam apparatus has been used to obtain a high sensitivity in combination with high energy-resolution. Total cross sections have been measured by detecting the residual atom created in the photodetachment process. A scheme for state-selective detection of the residual atom, based on resonance ionization spectroscopy (RIS), has been developed for measurements of partial cross sections. Further, a newly developed time-of-flight spectrometer has been used for energy-resolved detection of electrons ejected in the photodetachment process. The accuracies of the electron affinities of Li and Te have been improved and all fine structure splittings of the As- ground state have been determined for the first time. Quasi-bound doubly excited states have been investigated by observing resonance structures in photodetachment spectra. Energies and widths of the resonances have been extracted from the measured cross sections. The high resolution and sensitivity of the apparatus, in combination with state-selective detection, have been necessary for these investigations. Resonance structures, associated with doubly excited states in Li- have been observed below the photodetachment thresholds corresponding to the 3p, 4p, 6p, and 7p states of the Li atom. Doubly excited states have also been investigated in Na- below the Na(4d) threshold and in He- below the He(n=3) thresholds. Photodetachment of C- has been studied in the vicinity of the C(2s2p3 5S) threshold, in the search for predicted doubly excited states, but no evidence of resonance structure was found. Measured cross sections and resonance parameters have been compared with recent calculations and have stimulated further theoretical investigations
    corecore