758 research outputs found

    The triple quasar Q1115+080A, B, C - A quintuple gravitational lens image

    Get PDF
    Spectroscopy and direct imaging of Qll 15+080A,B,C with a CCD camera supports the hypothesis that they are gravitational images of a single object. Spectroscopy of the C III] λ1909 emission line shows all the images to have identical spectra and redshifts (to within 100 km s^(-1)), except that Bis slightly redder. The position and brightness of the three images has been accurately measured; the images A, B, and Care magnitudes 16.30,18.64, and 18.17, respectively, in the r band, B is 1". 77 from A in position angle 266°, and C is 2".28 away at position angle 322°. A and C have the same color, but B is redder by 0.23 mag in (g-r). There is no trace of a lens galaxy, which must have a surface brightness of less than 29 mag arcsec^(-2) at a distance of 5" -8" from Q1115+080. Three bright galaxies lie near Q1115+080, apparently forming a small group. Gravitational lens imaging by a massive spiral galaxy is explored, and we find a quintuple image model resembling Q1115+080 A,B,C. In this model, Q1115+080A is a highly magnified close pair of images oriented in position angle 23°. An elongation of Q1115+080A at this angle is seen in the CCD pictures

    Spectroscopy of Quasar Candidates from SDSS Commissioning Data

    Get PDF
    The Sloan Digital Sky Survey has obtained images in five broad-band colors for several hundred square degrees. We present color-color diagrams for stellar objects, and demonstrate that quasars are easily distinguished from stars by their distinctive colors. Follow-up spectroscopy in less than ten nights of telescope time has yielded 22 new quasars, 9 of them at z>3.65z> 3.65, and one with z=4.75z = 4.75, the second highest-redshift quasar yet known. Roughly 80% of the high-redshift quasar candidates selected by color indeed turn out to be high-redshift quasars.Comment: 4 pages, 3 figures, to appear in the proceedings of "After the Dark Ages: When Galaxies were Young (the Universe at 2<z<5)", 9th Annual October Astrophysics Conference in Marylan

    An Empirical Calibration of the Completeness of the SDSS Quasar Survey

    Get PDF
    Spectra of nearly 20000 point-like objects to a Galactic reddening corrected magnitude of i=19.1 have been obtained to test the completeness of the SDSS quasar survey. The spatially-unresolved objects were selected from all regions of color space, sparsely sampled from within a 278 sq. deg. area of sky covered by this study. Only ten quasars were identified that were not targeted as candidates by the SDSS quasar survey (including both color and radio source selection). The inferred density of unresolved quasars on the sky that are missed by the SDSS algorithm is 0.44 per sq. deg, compared to 8.28 per sq. deg. for the selected quasar density, giving a completeness of 94.9(+2.6,-3.8) to the limiting magnitude. Omitting radio selection reduces the color-only selection completeness by about 1%. Of the ten newly identified quasars, three have detected broad absorption line systems, six are significantly redder than other quasars at the same redshift, and four have redshifts between 2.7 and 3.0 (the redshift range where the SDSS colors of quasars intersect the stellar locus). The fraction of quasars missed due to image defects and blends is approximately 4%, but this number varies by a few percent with magnitude. Quasars with extended images comprise about 6% of the SDSS sample, and the completeness of the selection algorithm for extended quasars is approximately 81%, based on the SDSS galaxy survey. The combined end-to-end completeness for the SDSS quasar survey is approximately 89%. The total corrected density of quasars on the sky to i=19.1 is estimated to be 10.2 per sq. deg.Comment: 37 pages, 10 figures, accepted for publication in A

    Efficient Photometric Selection of Quasars from the Sloan Digital Sky Survey: 100,000 z<3 Quasars from Data Release One

    Full text link
    We present a catalog of 100,563 unresolved, UV-excess (UVX) quasar candidates to g=21 from 2099 deg^2 of the Sloan Digital Sky Survey (SDSS) Data Release One (DR1) imaging data. Existing spectra of 22,737 sources reveals that 22,191 (97.6%) are quasars; accounting for the magnitude dependence of this efficiency, we estimate that 95,502 (95.0%) of the objects in the catalog are quasars. Such a high efficiency is unprecedented in broad-band surveys of quasars. This ``proof-of-concept'' sample is designed to be maximally efficient, but still has 94.7% completeness to unresolved, g<~19.5, UVX quasars from the DR1 quasar catalog. This efficient and complete selection is the result of our application of a probability density type analysis to training sets that describe the 4-D color distribution of stars and spectroscopically confirmed quasars in the SDSS. Specifically, we use a non-parametric Bayesian classification, based on kernel density estimation, to parameterize the color distribution of astronomical sources -- allowing for fast and robust classification. We further supplement the catalog by providing photometric redshifts and matches to FIRST/VLA, ROSAT, and USNO-B sources. Future work needed to extend the this selection algorithm to larger redshifts, fainter magnitudes, and resolved sources is discussed. Finally, we examine some science applications of the catalog, particularly a tentative quasar number counts distribution covering the largest range in magnitude (14.2<g<21.0) ever made within the framework of a single quasar survey.Comment: 35 pages, 11 figures (3 color), 2 tables, accepted by ApJS; higher resolution paper and ASCII version of catalog available at http://sdss.ncsa.uiuc.edu/qso/nbckde

    Towards a Continuous Record of the Sky

    Full text link
    It is currently feasible to start a continuous digital record of the entire sky sensitive to any visual magnitude brighter than 15 each night. Such a record could be created with a modest array of small telescopes, which collectively generate no more than a few Gigabytes of data daily. Alternatively, a few small telescopes could continually re-point to scan and reco rd the entire sky down to any visual magnitude brighter than 15 with a recurrence epoch of at most a few weeks, again always generating less than one Gigabyte of data each night. These estimates derive from CCD ability and budgets typical of university research projects. As a prototype, we have developed and are utilizing an inexpensive single-telescope system that obtains optical data from about 1500 square degrees. We discuss the general case of creating and storing data from a both an epochal survey, where a small number of telescopes continually scan the sky, and a continuous survey, composed of a constellation of telescopes dedicated each continually inspect a designated section of the sky. We compute specific limitations of canonical surveys in visible light, and estimate that all-sky continuous visual light surveys could be sensitive to magnitude 20 in a single night by about 2010. Possible scientific returns of continuous and epochal sky surveys include continued monitoring of most known variable stars, establishing case histories for variables of future interest, uncovering new forms of stellar variability, discovering the brightest cases of microlensing, discovering new novae and supernovae, discovering new counterparts to gamma-ray bursts, monitoring known Solar System objects, discovering new Solar System objects, and discovering objects that might strike the Earth.Comment: 38 pages, 9 postscript figures, 2 gif images. Revised and new section added. Accepted to PASP. Source code submitted to ASCL.ne

    High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data IV: Luminosity Function from the Fall Equatorial Stripe Sampl

    Get PDF
    This is the fourth paper in a series aimed at finding high-redshift quasars from five-color imaging data taken along the Celestial Equator by the SDSS. during its commissioning phase. In this paper, we use the color-selected sample of 39 luminous high-redshift quasars presented in Paper III to derive the evolution of the quasar luminosity function over the range of 3.6<z<5.0, and -27.5<M_1450<-25.5 (Omega=1, H_0=50 km s^-1 Mpc^-1). We use the selection function derived in Paper III to correct for sample incompleteness. The luminosity function is estimated using three different methods: (1) the 1/V_a estimator; (2) a maximum likelihood solution, assuming that the density of quasars depends exponentially on redshift and as a power law in luminosity and (3) Lynden-Bell's non-parametric C^- estimator. All three methods give consistent results. The luminous quasar density decreases by a factor of ~ 6 from z=3.5 to z=5.0, consistent with the decline seen from several previous optical surveys at z<4.5. The luminosity function follows psi(L) ~ L^{-2.5} for z~4 at the bright end, significantly flatter than the bright end luminosity function psi(L) \propto L^{-3.5} found in previous studies for z<3, suggesting that the shape of the quasar luminosity function evolves with redshift as well, and that the quasar evolution from z=2 to 5 cannot be described as pure luminosity evolution. Possible selection biases and the effect of dust extinction on the redshift evolution of the quasar density are also discussed.Comment: AJ accepted, with minor change

    A Catalogue of Morphologically Classified Galaxies from the Sloan Digital Sky Survey: North Equatorial Region

    Full text link
    We present a catalogue of morphologically classified bright galaxies in the north equatorial stripe (230 deg2^2) derived from the Third Data Release of the Sloan Digital Sky Survey (SDSS). Morphological classification is performed by visual inspection of images in the gg band. The catalogue contains 2253 galaxies complete to a magnitude limit of r=16r=16 after Galactic extinction correction, selected from 2658 objects that are judged as extended in the photometric catalogue in the same magnitude limit. 1866 galaxies in our catalogue have spectroscopic information. A brief statistical analysis is presented for the frequency of morphological types and mean colours in the catalogue. A visual inspection of the images reveals that the rate of interacting galaxies in the local Universe is approximately 1.5% in the r≤16r\le16 sample. A verification is made for the photometric catalogue generated by the SDSS, especially as to its bright end completeness.Comment: Accepted for publication in Astronomical Journal. Table 2 available at http://www.icrr.u-tokyo.ac.jp/~fukugita/MCGpaper/table2.tx

    Visible camera cryostat design and performance for the SuMIRe Prime Focus Spectrograph (PFS)

    Full text link
    We describe the design and performance of the SuMIRe Prime Focus Spectrograph (PFS) visible camera cryostats. SuMIRe PFS is a massively multi-plexed ground-based spectrograph consisting of four identical spectrograph modules, each receiving roughly 600 fibers from a 2394 fiber robotic positioner at the prime focus. Each spectrograph module has three channels covering wavelength ranges 380~nm -- 640~nm, 640~nm -- 955~nm, and 955~nm -- 1.26~um, with the dispersed light being imaged in each channel by a f/1.07 vacuum Schmidt camera. The cameras are very large, having a clear aperture of 300~mm at the entrance window, and a mass of ∼\sim280~kg. In this paper we describe the design of the visible camera cryostats and discuss various aspects of cryostat performance
    • …
    corecore