85 research outputs found
Convergence of summation-by-parts finite difference methods for the wave equation
In this paper, we consider finite difference approximations of the second
order wave equation. We use finite difference operators satisfying the
summation-by-parts property to discretize the equation in space. Boundary
conditions and grid interface conditions are imposed by the
simultaneous-approximation-term technique. Typically, the truncation error is
larger at the grid points near a boundary or grid interface than that in the
interior. Normal mode analysis can be used to analyze how the large truncation
error affects the convergence rate of the underlying stable numerical scheme.
If the semi-discretized equation satisfies a determinant condition, two orders
are gained from the large truncation error. However, many interesting second
order equations do not satisfy the determinant condition. We then carefully
analyze the solution of the boundary system to derive a sharp estimate for the
error in the solution and acquire the gain in convergence rate. The result
shows that stability does not automatically yield a gain of two orders in
convergence rate. The accuracy analysis is verified by numerical experiments.Comment: In version 2, we have added a new section on the convergence analysis
of the Neumann problem, and have improved formulations in many place
An Equation-Free Approach for Second Order Multiscale Hyperbolic Problems in Non-Divergence Form
The present study concerns the numerical homogenization of second order
hyperbolic equations in non-divergence form, where the model problem includes a
rapidly oscillating coefficient function. These small scales influence the
large scale behavior, hence their effects should be accurately modelled in a
numerical simulation. A direct numerical simulation is prohibitively expensive
since a minimum of two points per wavelength are needed to resolve the small
scales. A multiscale method, under the equation free methodology, is proposed
to approximate the coarse scale behaviour of the exact solution at a cost
independent of the small scales in the problem. We prove convergence rates for
the upscaled quantities in one as well as in multi-dimensional periodic
settings. Moreover, numerical results in one and two dimensions are provided to
support the theory
Atomistic-continuum multiscale modelling of magnetisation dynamics at non-zero temperature
In this article, a few problems related to multiscale modelling of magnetic
materials at finite temperatures and possible ways of solving these problems
are discussed. The discussion is mainly centred around two established
multiscale concepts: the partitioned domain and the upscaling-based
methodologies. The major challenge for both multiscale methods is to capture
the correct value of magnetisation length accurately, which is affected by a
random temperature-dependent force. Moreover, general limitations of these
multiscale techniques in application to spin systems are discussed.Comment: 30 page
- …