170 research outputs found

    Oxygen Ion Energization Observed At High Altitudes

    Get PDF
    We present a case study of significant heating (up to 8 keV) perpendicular to the geomagnetic field of outflowing oxygen ions at high altitude (12 RE) above the polar cap. The shape of the distribution functions indicates that most of the heating occurs locally (within 0.2–0.4 RE in altitude). This is a clear example of local ion energization at much higher altitude than usually reported. In contrast to many events at lower altitudes, it is not likely that the locally observed wave fields can cause the observed ion energization. Also, it is not likely that the ions have drifted from some nearby energization region to the point of observation. This suggests that additional fundamentally different ion energization mechanisms are present at high altitudes. One possibility is that the magnetic moment of the ions is not conserved, resulting in slower outflow velocities and longer time for ion energization

    The Hydrogen Exospheric Density Profile Measured with ASPERA-3/NPD

    Get PDF
    We have evaluated the Lyman-α limb emission from the exospheric hydrogen of Mars measured by the neutral particle detector of the ASPERA-3 instrument on Mars Express in 2004 at low solar activity (solar activity index = 42, F10.7=100). We derive estimates for the hydrogen exobase density, n H = 1010 m−3, and for the apparent temperature, T > 600 K. We conclude that the limb emission measurement is dominated by a hydrogen component that is considerably hotter than the bulk temperature at the exobase. The derived values for the exosphere density and temperature are compared with similar measurements done by the Mariner space probes in the 1969. The values found with Mars Express and Mariner data are brought in a broader context of exosphere models including the possibility of having two hydrogen components in the Martian exosphere. The present observation of the Martian hydrogen exosphere is the first one at high altitudes during low solar activity, and shows that for low solar activity exospheric densities are not higher than for high solar activit

    Energetic Hydrogen and Oxygen Atoms Observed on the Nightside of Mars

    Get PDF
    We present measurements of energetic hydrogen and oxygen atoms (ENAs) on the nightside of Mars detected by the neutral particle detector (NPD) of ASPERA-3 on Mars Express. We focus on the observations for which the field-of-view of NPD was directed at the nightside of Mars or at the region around the limb, thus monitoring the flow of ENAs towards the nightside of the planet. We derive energy spectra and total fluxes, and have compiled maps of hydrogen ENA outflow. The hydrogen ENA intensities reach 105 cm−2 sr−1 s−1, but no oxygen ENA signals above the detection threshold of 104 cm−2 sr−1 s−1 are observed. These intensities are considerably lower than most theoretical predictions. We explain the discrepancy as due to an overestimation of the charge-exchange processes in the models for which too high an exospheric density was assumed. Recent UV limb emission measurements (Galli et al., this issue) point to a hydrogen exobase density of 1010 m−3 and a very hot hydrogen component, whereas the models were based on a hydrogen exobase density of 1012 m−3 and a temperature of 200 K predicted by Krasnopolsky and Gladstone (1996). Finally, we estimate the global atmospheric loss rate of hydrogen and oxygen due to the production of ENA

    Faire l’Union. La refondation des parties de droite aprĂšs les Ă©lections de 2002

    Get PDF
    Un nouveau parti de droite, pour le moment dĂ©nommĂ© UMP, a Ă©tĂ© mis en place entre des deux tours de l'Ă©lection prĂ©sidentielle. Cet article se donne pour objectif d'analyser les enjeux de cette transformation. La genĂšse de l'UMP permet de saisir dans quelle mesure un parti poli-tique peut ĂȘtre conçu comme la connexion d'un ensemble de systĂšmes de coopĂ©ration organisĂ©s autour de postes Ă  conquĂ©rir. En effet, l'impĂ©ratif d'unification de la droite française est liĂ© au dĂ©calage persistant existant entre les systĂšmes de coopĂ©ration lĂ©gislatif et prĂ©sidentiel. Mais les questions soulevĂ©es par cette fusion partisane (l'UMP inclut le RPR, DL et une majeure partie de l'UDF) montrent que cette vision ne peut suffire et que les partis ne sont pas seulement des systĂšmes de coopĂ©ration mais aussi des systĂšmes de production. DĂšs lors, leurs logiques d'organisation internes pĂšsent sur ce travail de transformation du social en politique, de la plu-ralitĂ© en homogĂ©nĂ©itĂ©. Dans le cas de l'UMP, il s'agit d'abord de mettre en commun des modes de fonctionnement, en particulier de dĂ©finir la place et la lĂ©gitimitĂ© accordĂ©es respectivement aux adhĂ©rents et aux Ă©lus, mais aussi d'organiser l'expression de la pluralitĂ© idĂ©ologique par la mise en place de courants

    First investigation of the diamagnetic cavity boundary layer with a 1D3V PIC simulation

    Get PDF
    Context. Amongst the different features and boundaries encountered around comets, one remains of particular interest to the plasma community: The diamagnetic cavity. Crossed for the first time at 1P/Halley during the Giotto flyby in 1986 and later met more than 700 times by the ESA Rosetta spacecraft around Comet 67P/Churyumov-Gerasimenko, this region, almost free of any magnetic field, surrounds nuclei of active comets. However, previous observations and modelling of this part of the coma have not yet provided a definitive answer as to the origin of such a cavity and on its border, the diamagnetic cavity boundary layer. Aims. We investigate which forces and equilibrium might be at play and balance the magnetic pressure at this boundary down to the spatial and temporal scales of the electrons in the 1D collisionless case. In addition, we scrutinise assumptions made in magneto-hydrodynamic and hybrid simulations of this environment and check for their validity. Methods. We simulated this region at the electron scale by means of 1D3V particle-in-cell simulations and SMILEI code. Results. Across this layer, depending on the magnetic field strength, the electric field is governed by different equilibria, with a thin double-layer forming ahead. In addition, we show that the electron distribution function departs from Maxwellian and/or gyrotropic distributions and that electrons do not behave adiabatically. We demonstrate the need to investigate this region at the electron scale in depth with fully kinetic simulations

    Evolution of the ion environment of comet 67P during the Rosetta mission as seen by RPC-ICA

    Get PDF
    Rosetta has followed comet 67P from low activity at more than 3.6 au heliocentric distance to high activity at perihelion (1.24 au) and then out again. We provide a general overview of the evolution of the dynamic ion environment using data from the RPC-ICA ion spectrometer. We discuss where Rosetta was located within the evolving comet magnetosphere. For the initial observations, the solar wind permeated all of the coma. In 2015 mid-April, the solar wind started to disappear from the observation region, to re-appear again in 2015 December. Low-energy cometary ions were seen at first when Rosetta was about 100 km from the nucleus at 3.6 au, and soon after consistently throughout the mission except during the excursions to farther distances from the comet. The observed flux of low-energy ions was relatively constant due to Rosetta's orbit changing with comet activity. Accelerated cometary ions, moving mainly in the antisunward direction gradually became more common as comet activity increased. These accelerated cometary ions kept being observed also after the solar wind disappeared from the location of Rosetta, with somewhat higher fluxes further away from the nucleus. Around perihelion, when Rosetta was relatively deep within the comet magnetosphere, the fluxes of accelerated cometary ions decreased, as did their maximum energy. The disappearance of more energetic cometary ions at close distance during high activity is suggested to be due to a flow pattern where these ions flow around the obstacle of the denser coma or due to charge exchange losses

    Investigating short-time-scale variations in cometary ions around comet 67P

    Get PDF
    The highly varying plasma environment around comet 67P/Churyumov–Gerasimenko inspired an upgrade of the ion mass spectrometer (Rosetta Plasma Consortium Ion Composition Analyzer) with new operation modes, to enable high time resolution measurements of cometary ions. Two modes were implemented, one having a 4 s time resolution in the energy range 0.3–82 eV/q and the other featuring a 1 s time resolution in the energy range 13–50 eV/q. Comparing measurements made with the two modes, it was concluded that 4 s time resolution is enough to capture most of the fast changes of the cometary ion environment. The 1462 h of observations done with the 4 s mode were divided into hour-long sequences. It is possible to sort 84 per cent of these sequences into one of five categories, depending on their appearance in an energy–time spectrogram. The ion environment is generally highly dynamic, and variations in ion fluxes and energies are seen on time-scales of 10 s to several minutes
    • 

    corecore