5 research outputs found

    Economic resilience during COVID-19: the case of food retail businesses in Seattle, Washington

    Get PDF
    The first year of COVID-19 tested the economic resilience of cities, calling into question the viability of density and the essential nature of certain types of services. This study examines built environment and socio-economic factors associated with the closure of customer-facing food businesses across urban areas of Seattle, Washington. The study covers 16 neighborhoods (44 census block groups), with two field audits of businesses included in cross-sectional studies conducted during the peak periods of the pandemic in 2020. Variables describing businesses and their built environments were selected and classified using regression tree methods, with relationships to business continuity estimated in a binomial regression model, using business type and neighborhood socio-demographic characteristics as controlled covariates. Results show that the economic impact of the pandemic was not evenly distributed across the built environment. Compared to grocery stores, the odds of a restaurant staying open during May and June were 24%, only improving 10% by the end of 2020. Density played a role in business closure, though this role differed over time. In May and June, food retail businesses were 82% less likely to remain open if located within a quarter-mile radius of the office-rich areas of the city, where pre-pandemic job density was greater than 95 per acre. In November and December, food retail businesses were 66% less likely to remain open if located in areas of residential density greater than 23.6 persons per acre. In contrast, median household income and percentage of non-Asian persons of color were positively and significantly associated with business continuity. Altogether, these findings provide more detailed and accurate profiles of food retail businesses and a more complete impression of the spatial heterogeneity of urban economic resilience during the pandemic, with implications for future urban planning and real estate development in the post-pandemic era

    The Built Environments Laboratory: An Interdisciplinary Framework for Studio Education in the Planning and Design Disciplines

    No full text
    Interdisciplinary education is becoming a hallmark strategy for preparing and providing students with the skills necessary for addressing the complexity of our contemporary built environments. In this paper, we examine how the studio model of education presents opportunities for increasing interdisciplinarity in the classroom. Specifically, we develop a pedagogical framework for examining three educational themes: establishing rigorous forms of experimentation, developing collective understanding, and generating interdisciplinary collaboration. We identify that developing collective understanding is the most challenging of the three themes to frame, implement, and achieve in the classroom, suggesting interdisciplinary studio education should focus on sharing disciplinary vocabularies and improving students’ communicative techniques

    Site Resource Inventories – a Missing Link in the Circular City's Information Flow

    No full text
    A circular city builds upon the principles of circular economy, which key concepts of reduce, reuse, recycle, and recover lead to a coupling of resources: products and by-products of one production process become the input of another one, often in local vicinity. However, sources, types and available quantities of underutilised resources in cities are currently not well documented. Therefore, there is a missing link in the information flow of the circular city between potential users and site-specific data. To close this gap, this study introduces the concept of a site resource inventory in conjunction with a new information model that can manage the data needed for advancing the circular city. A core taxonomy of terms is established as the foundation for the information model: the circular economy is defined as a network of circular economy entities which are regarded as black boxes and connected by their material and energy inputs and outputs. This study proposes a site resource inventory, which is a collection of infrastructural and building-specific parameters that assess the suitability of urban sites for a specific circular economy entity. An information model is developed to manage the data that allows the entities to effectively organise the allocation and use of resources within the circular city and its material and energy flows. The application of this information model was demonstrated by comparing the demand and availability of required alternative resources (e.g. greywater) at a hypothetical site comprising a commercial aquaponic facility (synergistic coupling of fish and vegetables production) and a residential building. For the implementation of the information model a proposal is made which uses the publicly available geodata infrastructure of OpenStreetMap and adopts its tag system to operationalise the integration of circular economy data by introducing new tags. A site resource inventory has the potential to bring together information needs and it is thus intended to support companies when making their business location decisions or to support local authorities in the planning process
    corecore