10 research outputs found

    Critical behavior of gravitating sphalerons

    Get PDF
    We examine the gravitational collapse of sphaleron type configurations in Einstein--Yang--Mills--Higgs theory. Working in spherical symmetry, we investigate the critical behavior in this model. We provide evidence that for various initial configurations, there can be three different critical transitions between possible endstates with different critical solutions sitting on the threshold between these outcomes. In addition, we show that within the dispersive and black hole regimes, there are new possible endstates, namely a stable, regular sphaleron and a stable, hairy black hole.Comment: Latex, 14 pages, 8 figure

    Pentacene islands grown on ultra-thin SiO2

    Full text link
    Ultra-thin oxide (UTO) films were grown on Si(111) in ultrahigh vacuum at room temperature and characterized by scanning tunneling microscopy. The ultra-thin oxide films were then used as substrates for room temperature growth of pentacene. The apparent height of the first layer is 1.57 +/- 0.05 nm, indicating standing up pentacene grains in the thin-film phase were formed. Pentacene is molecularly resolved in the second and subsequent molecular layers. The measured in-plane unit cell for the pentacene (001) plane (ab plane) is a=0.76+/-0.01 nm, b=0.59+/-0.01 nm, and gamma=87.5+/-0.4 degrees. The films are unperturbed by the UTO's short-range spatial variation in tunneling probability, and reduce its corresponding effective roughness and correlation exponent with increasing thickness. The pentacene surface morphology follows that of the UTO substrate, preserving step structure, the long range surface rms roughness of ~0.1 nm, and the structural correlation exponent of ~1.Comment: 15 pages, 4 figure

    The Spherically Symmetric Standard Model with Gravity

    Full text link
    Spherical reduction of generic four-dimensional theories is revisited. Three different notions of "spherical symmetry" are defined. The following sectors are investigated: Einstein-Cartan theory, spinors, (non-)abelian gauge fields and scalar fields. In each sector a different formalism seems to be most convenient: the Cartan formulation of gravity works best in the purely gravitational sector, the Einstein formulation is convenient for the Yang-Mills sector and for reducing scalar fields, and the Newman-Penrose formalism seems to be the most transparent one in the fermionic sector. Combining them the spherically reduced Standard Model of particle physics together with the usually omitted gravity part can be presented as a two-dimensional (dilaton gravity) theory.Comment: 58 pages, 2 eps figure

    New ligands for MHC molecules based on activity patterns of peptide libraries

    Full text link

    Einstein’s Field Equations, Their Special Mathematical Structure, and Some of Their Remarkable Physical Predictions

    Full text link

    Dust Phenomena Relating to Airless Bodies

    Full text link
    corecore