2 research outputs found

    Performance of Machine Learning Classification in Mammography Images using BI-RADS

    Full text link
    This research aims to investigate the classification accuracy of various state-of-the-art image classification models across different categories of breast ultrasound images, as defined by the Breast Imaging Reporting and Data System (BI-RADS). To achieve this, we have utilized a comprehensively assembled dataset of 2,945 mammographic images sourced from 1,540 patients. In order to conduct a thorough analysis, we employed six advanced classification architectures, including VGG19 \cite{simonyan2014very}, ResNet50 \cite{he2016deep}, GoogleNet \cite{szegedy2015going}, ConvNext \cite{liu2022convnet}, EfficientNet \cite{tan2019efficientnet}, and Vision Transformers (ViT) \cite{dosovitskiy2020image}, instead of traditional machine learning models. We evaluate models in three different settings: full fine-tuning, linear evaluation and training from scratch. Our findings demonstrate the effectiveness and capability of our Computer-Aided Diagnosis (CAD) system, with a remarkable accuracy of 76.39\% and an F1 score of 67.94\% in the full fine-tuning setting. Our findings indicate the potential for enhanced diagnostic accuracy in the field of breast imaging, providing a solid foundation for future endeavors aiming to improve the precision and reliability of CAD systems in medical imaging

    Evaluation of Noise Reduction Methods for Sentence Recognition by Sinhala Speaking Listeners

    Full text link
    Noise reduction is a crucial aspect of hearing aids, which researchers have been striving to address over the years. However, most existing noise reduction algorithms have primarily been evaluated using English. Considering the linguistic differences between English and Sinhala languages, including variation in syllable structures and vowel duration, it is very important to assess the performance of noise reduction tailored to the Sinhala language. This paper presents a comprehensive analysis between wavelet transformation and adaptive filters for noise reduction in Sinhala languages. We investigate the performance of ten wavelet families with soft and hard thresholding methods against adaptive filters with Normalized Least Mean Square, Least Mean Square Average Normalized Least Mean Square, Recursive Least Square, and Adaptive Filtering Averaging optimization algorithms along with cepstral and energy-based voice activity detection algorithms. The performance evaluation is done using objective metrics; Signal to Noise Ratio (SNR) and Perceptual Evaluation of Speech Quality (PESQ) and a subjective metric; Mean Opinion Score (MOS). A newly recorded Sinhala language audio dataset and the NOIZEUS database by the University of Texas, Dallas were used for the evaluation. Our code is available at https://github.com/ChathukiKet/Evaluation-of-Noise-Reduction-Method
    corecore