7 research outputs found

    Molecules incorporating a benzothiazole core scaffold inhibit the N-myristoyltransferase of Plasmodium falciparum.

    No full text
    Recombinant N-myristoyltransferase of Plasmodium falciparum (termed PfNMT) has been used in the development of a SPA (scintillation proximity assay) suitable for automation and high-throughput screening of inhibitors against this enzyme. The ability to use the SPA has been facilitated by development of an expression and purification system which yields considerably improved quantities of soluble active recombinant PfNMT compared with previous studies. Specifically, yields of pure protein have been increased from 12 microg x l(-1) to >400 microg x l(-1) by use of a synthetic gene with codon usage optimized for expression in an Escherichia coli host. Preliminary small-scale 'piggyback' inhibitor studies using the SPA have identified a family of related molecules containing a core benzothiazole scaffold with IC50 values 80% at a concentration of 10 microM

    Systematic Genetic Analysis of the Plasmodium falciparum MSP7-Like Family Reveals Differences in Protein Expression, Location, and Importance in Asexual Growth of the Blood-Stage Parasite▿†‡

    No full text
    Proteins located on Plasmodium falciparum merozoites, the invasive form of the parasite's asexual blood stage, are of considerable interest in vaccine research. Merozoite surface protein 7 (MSP7) forms a complex with MSP1 and is encoded by a member of a multigene family located on chromosome 13. The family codes for MSP7 and five MSP7-related proteins (MSRPs). In the present study, we have investigated the expression and the effect of msrp gene deletion at the asexual blood stage. In addition to msp7, msrp2, msrp3, and msrp5 are transcribed, and mRNA was easily detected by hybridization analysis, whereas mRNA for msrp1 and msrp4 could be detected only by reverse transcription (RT)-PCR. Notwithstanding evidence of transcription, antibodies to recombinant MSRPs failed to detect specific proteins, except for antibodies to MSRP2. Sequential proteolytic cleavages of MSRP2 resulted in 28- and 25-kDa forms. However, MSRP2 was absent from merozoites; the 25-kDa MSRP2 protein (MSRP225) was soluble and secreted upon merozoite egress. The msrp genes were deleted by targeted disruption in the 3D7 line, leading to ablation of full-length transcripts. MSRP deletion mutants had no detectable phenotype, with growth and invasion characteristics comparable to those of the parental parasite; only the deletion of MSP7 led to a detectable growth phenotype. Thus, within this family some of the genes are transcribed at a significant level in asexual blood stages, but the corresponding proteins may or may not be detectable. Interactions of the expressed proteins with the merozoite also differ. These results highlight the potential for unexpected differences of protein expression levels within gene families

    Characterization of N-myristoyltransferase from Plasmodium falciparum

    No full text
    The gene coding for myristoyl-CoA:protein N-myristoyltransferase (NMT) has been cloned from the malaria parasite Plasmodium falciparum. The gene appears to be single copy and mRNA is expressed in asexual blood-stage forms. Comparison of cDNA and genomic sequences identified three small introns. The open reading frame codes for a 410-amino-acid protein and no evidence of forms with an extended N-terminal coding sequence was obtained. Residues important in substrate binding and in the catalytic mechanism in other species are conserved. The protein was expressed from a plasmid in Escherichia coli, partially purified and shown to have enzymic activity using a synthetic peptide substrate. Comparison of the malaria parasite protein with that derived from the human gene showed a different pattern of inhibition by chemical modification. Human NMT activity was inhibited by diethylpyrocarbonate and partially inhibited by iodacetamide, whereas P. falciparum NMT activity was not inhibited by either pre-treatment. Since the enzyme in infectious fungi is a target for potential chemotherapeutic drugs, it should also be investigated in the context of parasitic infections such as that responsible for malaria
    corecore