21 research outputs found
Chitosan scaffolds with BMP-6 loaded alginate microspheres for periodontal tissue engineering
The aim of this study is to develop an effective growth factor releasing scaffold-microsphere system for promoting periodontal tissue engineering. Bone morphogenetic protein-6 (BMP-6)-loaded alginate microspheres in narrow size distribution were produced by optimising electrospraying conditions. The addition of these microspheres to chitosan gels produced a novel scaffold in which not only the pore sizes and interconnectivity were preserved, but also a controlled release vehicle was generated. Loading capacity was adjusted as 50ng or 100ng BMP-6 for each scaffold and the controlled release behaviour of BMP-6 from chitosan scaffolds was observed during seven days. Cell culture studies were carried out with rat mesenchymal stem cells derived from bone marrow in three groups; chitosan scaffolds, chitosan scaffolds containing BMP-6-loaded alginate microspheres and chitosan scaffolds with free BMP-6 in culture medium. Results showed that controlled delivery of BMP-6 from alginate microspheres has a significant effect on osteogenic differentiation. © 2012 Informa UK Ltd All rights reserved
Chitosan scaffolds with BMP-6 loaded alginate microspheres for periodontal tissue engineering
The aim of this study is to develop an effective growth factor releasing scaffold-microsphere system for promoting periodontal tissue engineering. Bone morphogenetic protein-6 (BMP-6)-loaded alginate microspheres in narrow size distribution were produced by optimising electrospraying conditions. The addition of these microspheres to chitosan gels produced a novel scaffold in which not only the pore sizes and interconnectivity were preserved, but also a controlled release vehicle was generated. Loading capacity was adjusted as 50ng or 100ng BMP-6 for each scaffold and the controlled release behaviour of BMP-6 from chitosan scaffolds was observed during seven days. Cell culture studies were carried out with rat mesenchymal stem cells derived from bone marrow in three groups; chitosan scaffolds, chitosan scaffolds containing BMP-6-loaded alginate microspheres and chitosan scaffolds with free BMP-6 in culture medium. Results showed that controlled delivery of BMP-6 from alginate microspheres has a significant effect on osteogenic differentiation. © 2012 Informa UK Ltd All rights reserved.National Council for Scientific ResearchThis study was supported by grant (110M345) of the Scientific and Research Council of Turkey (TUBITAK)
In vitro chondrogenesis by BMP6 gene therapy
In this study, the promotion of in vitro chondrogenesis was investigated by using chitosan scaffolds and rat bone marrow-derived mesenchymal stem cells (rBMSCs) which are transfected by BMP6 (bone morphogenetic protein-6) encoding gene. For this purpose, plasmid DNA (pShuttle-rBMP6), the expression vector consisting of the coding sequence of the BMP6 was obtained, and then, it was entrapped in chitosan scaffolds to obtain a gene-activated matrix (GAM). The chitosan scaffolds performed the controlled and sustained release of plasmid DNA, thus they continuously provided the modification of rBMSCs to induce chondrogenic differentiation. In addition, the cells were transfected by lipid-based agent (Lipofectamine) and then, these modified cells were inoculated into the chitosan scaffolds. Furthermore, a group of chitosan scaffolds with nontransfected rBMSCs with recombinant BMP6 free in culture medium was used as control. Comparative results showed that, mitochondrial activities of modified rBMSCs by Lipofectamine and chitosan GAM were significantly higher than those of nontransfected rBMSCs. The observations from scanning electron microscopy analysis confirmed that BMP6 gene-modified rBMSCs differentiated to the chondrogenic phenotype. Highest amount of glycosaminoglycan contents of rBMSCs on GAM concluded that BMP6 gene-activated chitosan scaffold has a potential in the application of cartilage regeneration. © 2012 Wiley Periodicals, Inc
Encapsulated boron as an osteoinductive agent for bone scaffolds
The aim of this study was to develop boron (B)-releasing polymeric scaffold to promote regeneration of bone tissue. Boric acid-doped chitosan nanoparticles with a diameter of approx. 175. nm were produced by tripolyphosphate (TPP)-initiated ionic gelation process. The nanoparticles strongly attached via electrostatic interactions into chitosan scaffolds produced by freeze-drying with approx. 100. µm pore diameter. According to the ICP-OES results, following first 5. h initial burst release, fast release of B from scaffolds was observed for 24. h incubation period in conditioned medium. Then, slow release of B was performed over 120. h. The results of the cell culture studies proved that the encapsulated boron within the scaffolds can be used as an osteoinductive agent by showing its positive effects on the proliferation and differentiation of MC3T3-E1 preosteoblastic cells. © 2015 Elsevier GmbH
Development of boron-doped tissue scaffolds for bone regeneration
WOS: 00033761260120
Comparative Chondrogenesis Of Human Cell Sources In 3D Scaffolds
Cartilage tissue can be engineered by starting from a diversity of cell sources, including stem-cell based and primary cell-based platforms. Selecting an appropriate cell source for the process of cartilage tissue engineering or repair is critical and challenging, due to the variety of cell options available. in this study, cellular responses of isolated human chondrocytes, human embryonic stem cells and mesenchymal stem cells (MSCs) derived from three sources, human embryonic stem cells, bone marrow and adipose tissue, were assessed for chondrogenic potential in 3D culture. All cell sources were characterized by FACS analysis to compare expression of some surface markers. The cells were differentiated in two different biomaterial matrices, silk and chitosan scaffolds, in the presence and absence of bone morphogenetic protein 6 (BMP6), along with the standard chondrogenic differentiating factors. Embryonic stem cells-derived MSCs showed unique characteristics, with preserved chondrogenic phenotype in both scaffolds with regard to chondrogenesis, as determined by real time RT-PCR, histological and microscopical analyses. After 4 weeks of cultivation, embryonic stem cells-derived MSCs were promising for chondrogenesis, particularly in the silk scaffolds with BMP6. The results suggest that cell source differences are important to consider with regard to chondrogenic outcomes, and among the variables addressed here the human embryonic stem cells-derived MSCs were the preferred cell source. Copyright (C) 2009 John Wiley & Sons, Ltd.Wo