10 research outputs found
Expression and prognostic significance of cox-2 and p-53 in hodgkin lymphomas: a retrospective study
<p>Abstract</p> <p>Background</p> <p>Cyclooxygenase (cox) is the rate-limiting enzyme, which catalyzes the conversion of arachidonic acid into prostaglandins and contributes to the inflammatory process. Cyclooxygenase-2 (cox-2), which is one of the two isoforms, plays a role in tumor progression and carcinogenesis. p53 contributes to apoptosis, DNA renewal and cell cycle. Studies concerning the relationship of cox-2 and p53 expressions and carcinogenesis are available, but the association between cox-2 and p53 in Hodgkin lymphoma (HL) is not exactly known.</p> <p>In our study, we examined the association of cox-2 and p53 expression, with age, stage, histopathological subtype, and survival in HL. We also examined correlation between cox-2 and p53 expression.</p> <p>Methods</p> <p>Cox-2 and p53 expressions in Hodgkin-Reed Sternberg cells (HRS) were examined in 54 patients with HL depending on cox-2 expression, stained cases were classified as positive, and unstained cases as negative. Nuclear staining of HRS cells with p53 was evaluated as positive. The classifications of positivity were as follows: negative if<10%; (1+) if 10-25%; (2+) if 25-50%; (3+) if 50-75%, (4+) if >75%.</p> <p>Results</p> <p>Cox-2 and p53 expressions were found in 49 (80%) and 29 (46%) patients, respectively. There were differences between histological subtypes according to cox-2 expression (p = 0.012). Mixed cellular (MC) and nodular sclerosing (NS) subtypes were seen most of the patients and cox-2 expression was evaluated mostly in the mixed cellular subtype.</p> <p>There were no statistically significant relationships between p53 and the histopathological subtypes; or between p53, cox-2 and the factors including stage, age and survival; or between p53 and cox-2 expression (p > 0.05).</p> <p>Conclusion</p> <p>Considering the significant relationship between the cox-2 expression and the subtypes of HL, cox-2 expression is higher in MC and NS subtypes. However the difference between these two subtypes was not significant. This submission must be advocated by studies with large series</p
Amelioration of Streptozotocin-Induced Diabetes in Mice with Cells Derived from Human Marrow Stromal Cells
Pluri-potent bone marrow stromal cells (MSCs) provide an attractive opportunity to generate unlimited glucose-responsive insulin-producing cells for the treatment of diabetes. We explored the potential for human MSCs (hMSCs) to be differentiated into glucose-responsive cells through a non-viral genetic reprogramming approach.Two HMSC lines were transfected with three genes: PDX-1, NeuroD1 and Ngn3 without subsequent selection, followed by differentiation induction in vitro and transplantation into diabetic mice. Human MSCs expressed mRNAs of the archetypal stem cell markers: Sox2, Oct4, Nanog and CD34, and the endocrine cell markers: PDX-1, NeuroD1, Ngn3, and Nkx6.1. Following gene transfection and differentiation induction, hMSCs expressed insulin in vitro, but were not glucose regulated. After transplantation, hMSCs differentiated further and approximately 12.5% of the grafted cells expressed insulin. The graft bearing kidneys contained mRNA of insulin and other key genes required for the functions of beta cells. Mice transplanted with manipulated hMSCs showed reduced blood glucose levels (from 18.9+/-0.75 to 7.63+/-1.63 mM). 13 of the 16 mice became normoglycaemic (6.9+/-0.64 mM), despite the failure to detect the expression of SUR1, a K(+)-ATP channel component required for regulation of insulin secretion.Our data confirm that hMSCs can be induced to express insulin sufficient to reduce blood glucose in a diabetic mouse model. Our triple gene approach has created cells that seem less glucose responsive in vitro but which become more efficient after transplantation. The maturation process requires further study, particularly the in vivo factors influencing the differentiation, in order to scale up for clinical purposes
Large scale genome-wide association and LDLA mapping study identifies QTLs for boar taint and related sex steroids
<p>Abstract</p> <p>Background</p> <p>Boar taint is observed in a high proportion of uncastrated male pigs and is characterized by an unpleasant odor/flavor in cooked meat, primarily caused by elevated levels of androstenone and skatole. Androstenone is a steroid produced in the testis in parallel with biosynthesis of other sex steroids like testosterone and estrogens. This represents a challenge when performing selection against androstenone in breeding programs, without simultaneously decreasing levels of other steroids. The aim of this study was to use high-density genome wide association (GWA) in combination with linkage disequilibrium-linkage analysis (LDLA) to identify quantitative trait loci (QTL) associated with boar taint compounds and related sex steroids in commercial Landrace (n = 1,251) and Duroc (n = 918) breeds.</p> <p>Results</p> <p>Altogether, 14 genome wide significant (GWS) QTL regions for androstenone in subcutaneous fat were obtained from the LDLA study in Landrace and 14 GWS QTL regions in Duroc. LDLA analysis revealed that 7 of these QTL regions, located on SSC 1, 2, 3, 7 and 15, were obtained in both breeds. All 14 GWS androstenone QTLs in Landrace are also affecting the estrogens at chromosome wise significance (CWS) or GWS levels, while in Duroc, 3 of the 14 QTLs affect androstenone without affecting any of the estrogens. For skatole, 10 and 4 QTLs were GWS in the LDLA analysis for Landrace and Duroc respectively, with 4 of these detected in both breeds. The GWS QTLs for skatole obtained by LDLA are located at SSC 1, 5, 6, 7, 10, 11, 13 and 14.</p> <p>Conclusion</p> <p>This is the first report applying the Porcine 60 K SNP array for simultaneous analysis of boar taint compounds and related sex hormones, using both GWA and LDLA approaches. Several QTLs are involved in regulation of androstenone and skatole, and most of the QTLs for androstenone are also affecting the levels of estrogens. Seven QTLs for androstenone were detected in one breed and confirmed in the other, i.e. in an independent sample, although the majority of QTLs are breed specific. Most QTLs for skatole do not negatively affect other sex hormones and should be easier to implement into the breeding scheme.</p
Quantum chemical calculations on the geometrical, conformational, spectroscopic and nonlinear optical parameters of 5-(2-Chloroethyl)-2,4-dichloro-6-methylpyrimidine
The optimized geometry, H-1 and C-13 NMR chemical shifts, conformational and natural bond orbital (NBO) analyses, thermodynamic parameters, molecular surfaces, Mulliken, NBO and APT charges for 5-(2-Chloroethyl)-2,4-dichloro-6-methylpyrimidine [C7H7C13N21 were investigated by the ab initio HF and density functional theory (DFT/B3LYP) methods with 6-311++G(d,p) basis set. The calculated structural parameters (bond lengths, bond angles and dihedral angles) and H-1 and C-13 NMR chemical shifts values are compared with experimental values of the investigated compound. The observed and the calculated values are found to be in good agreement. The energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were calculated, and the obtained energies displayed that charge transfer occurs in 5-(2-Chloroethyl)-2,4-dichloro-6-methylpyrimidine compound. In addition, the linear polarizability (alpha) and the first order hyperpolarizability (beta ) values of the investigated compound have been computed by using HF and DFT methods. (c) 2014 Elsevier B.V. All rights reserved
Separation of scintillation and Cherenkov light in an optical calorimeter
Simultaneous measurement of the scintillation and the Cherenkov light produced in hadronic shower development makes it possible to eliminate the effects of fluctuations in the electromagnetic shower fraction, which dominate and spoil the performance of non-compensating calorimeters. In this paper, we report on a study to separate the light signal produced by an optical calorimeter into its scintillation and Cherenkov components. To this effect, we use differences in the time structure of these two signals, as well as differences in the angular distribution of these two types of light. Both methods give useful results, especially when the numbers of scintillation and Cherenkov photons are comparable. (c) 2005 Elsevier B.V. All rights reserved