2 research outputs found

    Preparation of FeCo/C-N and FeNi/C-N Nanocomposites from Acrylamide Co-Crystallizates and Their Use as Lubricant Additives

    No full text
    FeCo and FeNi nanoalloy particles encapsulated in a nitrogen-doped carbonized shell (FeCo/C-N and FeNi/C-N) were synthesized by thermolysis at 400 °C of polyacrylamide complexes after frontal polymerization of co-crystallizate of Fe and Co or Ni nitrates and acrylamide. During the thermolysis of polyacrylamide complexes in a self-generated atmosphere, Co(II) or Ni(II) and Fe(III) cations are reduced to form FeCo and FeNi nanoalloy particles, while polyacrylamide simultaneously forms a nitrogen-doped carbon shell layer. This unique architecture provides high chemical and thermal stability of the resulting nanocomposites. The average crystallite size of FeCo and FeNi nanoparticles is 10 and 12 nm, respectively. The nanocomposites were studied by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The nanocomposites have been tested as antifriction and antiwear additives in lubricating oils. The optimal concentrations of nanoparticles were determined, at which the antifriction and antiwear properties of the lubricant manifest themselves in the best possible way

    Novel Self-Healing Metallocopolymers with Pendent 4-Phenyl-2,2′:6′,2″-terpyridine Ligand: Kinetic Studies and Mechanical Properties

    No full text
    We report here our successful attempt to obtain self-healing supramolecular hydrogels with new metal-containing monomers (MCMs) with pendent 4-phenyl-2,2′:6′,2″-terpyridine metal complexes as reversible moieties by free radical copolymerization of MCMs with vinyl monomers, such as acrylic acid and acrylamide. The resulting metal-polymer hydrogels demonstrate a developed system of hydrogen, coordination and electron-complementary π–π stacking interactions, which play a critical role in achieving self-healing. Kinetic data show that the addition of a third metal-containing comonomer to the system decreases the initial polymerization rate, which is due to the specific effect of the metal group located in close proximity of the active center on the growth of radicals
    corecore