39 research outputs found

    Global Analysis of Gene Expression: Methods, Interpretation, and Pitfalls

    Get PDF
    Abstract Over the past 15 years, global analysis of mRNA expression has emerged as a powerful strategy for biological discovery. Using the power of parallel processing, robotics, and computer-based informatics, a number of high-throughput methods have been devised. These include DNA microarrays, serial analysis of gene expression, quantitative RT-PCR, differential-display RT-PCR, and massively parallel signature sequencing. Each of these methods has inherent advantages and disadvantages, often related to expense, technical difficulty, specificity, and reliability. Further, the ability to generate large data sets of gene expression has led to new challenges in bioinformatics. Nonetheless, this technological revolution is transforming disease classification, gene discovery, and our understanding of regulatory gene networks

    Application of single molecule technology to rapidly map long DNA and study the conformation of stretched DNA

    Get PDF
    Herein we describe the first application of direct linear analysis (DLA) to the mapping of a bacterial artificial chromosome (BAC), specifically the 185.1 kb-long BAC 12M9. DLA is a single molecule mapping technology, based on microfluidic elongation and interrogation of individual DNA molecules, sequence-specifically tagged with bisPNAs. A DNA map with S/N ratio sufficiently high to detect all major binding sites was obtained using only 200 molecule traces. A new method was developed to extract an oriented map from an averaged map that included a mixture of head-first and tail-first DNA traces. In addition, we applied DLA to study the conformation and tagging of highly stretched DNA. Optimal conditions for promoting sequence-specific binding of bisPNA to an 8 bp target site were elucidated using DLA, which proved superior to electromobility shift assays. DLA was highly reproducible with a hybridized tag position localized with an accuracy of ±0.7 µm or ±2.1 kb demonstrating its utility for rapid mapping of large DNA at the single molecule level. Within this accuracy, DNA molecules, stretched to at least 85% of their contour length, were stretched uniformly, so that the map expressed in relative coordinates, was the same regardless of the molecule extension

    Regulation of expression of the stress response gene, Osp94: identification of the tonicity response element and intracellular signalling pathways.

    No full text
    Osp94 (osmotic stress protein of 94 kDa) is known to be up-regulated by hypertonic and heat-shock stresses in mouse renal inner medullary collecting duct (mIMCD3) cells. To investigate the molecular mechanism of transcriptional regulation of the Osp94 gene under these stresses, we cloned and characterized the 5'-flanking region of the gene. Sequence analysis of the proximal 4 kb 5'-flanking region revealed a TATA-less G/C-rich promoter region containing a cluster of Sp1 sites. We also identified upstream sequence motifs similar to the consensus TonE/ORE (tonicity-response element/osmotic response element) as well as the consensus HSE (heat-shock element). Luciferase activities in cells transfected with reporter constructs containing a TonE/ORE-like element (Osp94-TonE; 5'-TGGAAAGGACCAG-3') and HSE enhanced reporter gene expression under hypertonic stress and heat-shock stress respectively. Electrophoretic gel mobility-shift assay showed a slowly migrating band binding to the Osp94-TonE probe, probably representing binding of TonEBP (TonE binding protein) to this enhancer element. Furthermore, treatment of mIMCD3 cells with MAPK (mitogen-activated protein kinase) inhibitors (SB203580, PD98059, U0126 and SP600125) and a proteasome inhibitor (MG132) suppressed the increase in Osp94 gene expression caused by hypertonic NaCl. These results indicate that the 5'-flanking region of Osp94 gene contains a hypertonicity sensitive cis -acting element, Osp94-TonE, which is distinct from a functional HSE. Furthermore, the MAPK and proteasome systems appear to be, at least in part, involved in hypertonic-stressmediated regulation of Osp94 through Osp94-TonE

    Localization of the thiazide sensitive Na-Cl cotransporter, rTSC1, in the rat kidney

    Get PDF
    Localization of the thiazide sensitive Na-Cl cotransporter, rTSC1, in the rat kidney. A thiazide sensitive Na-C1 cotransporter, rTSC1, has recently been cloned from a rat kidney cortex cDNA library. The molecular regulation and nephron localization of this protein is unknown. The purpose of this study was to examine the nephron distribution and subcellular localization of the rTSC1 protein in the rat kidney. In situ hybridization showed rTSC1 transcripts were localized to short, convoluted tubule segments in the kidney cortex. Polyclonal antibodies raised against a 110 amino acid segment from the amino terminus of rTSC1 recognized three major bands of 135, 140 and 155kDa on Western blotting of membrane protein from cortex but not outer medulla of the rat kidney. Immunofluorescence studies using the antibody alone and in double labeling experiments with antibodies against the H+ ATPase and calbindin D28, showed intense labeling of apical membranes in the distal nephron beginning in the initial distal convoluted tubule and terminating within the connecting tubule. The intensity of labeling diminished from proximal to distal sites along the distal tubule. Ultrastructural studies by immunoelectron microscopy showed the cotransporter protein to be localized predominately on apical microvilli of the distal convoluted tubule cells. These results are consistent with rTSC1 encoding the apical thiazide sensitive Na-Cl cotransporter in the distal tubule

    Transcriptional Activation of Placental Growth Factor by the Forkhead/Winged Helix Transcription Factor FoxD1

    Get PDF
    AbstractStromal-epithelial interactions play an important role in renal organogenesis [1]. Expression of the forkhead/winged helix transcription factor FoxD1 (BF-2) is restricted to stromal cells in the embryonic renal cortex, but it mediates its effects on the adjacent ureteric bud and metanephric mesenchyme, which fail to grow and differentiate in BF-2 null mice [2]. BF-2 is therefore likely to regulate transcription of factors secreted by stromal cells that modulate the differentiation of neighboring epithelial cells. Here, we used cells with inducible expression of BF-2, combined with microarray analysis, to identify Placental Growth Factor (PlGF), a Vascular Endothelial Growth Factor (VEGF) family member previously implicated in angiogenesis, as a downstream target of BF-2. BF-2 binds to a conserved HNF3β site in the PlGF promoter and activates transcription. PlGF is precisely coexpressed with BF-2, both temporally and spatially, within the developing renal stroma, and it is completely absent in BF-2 null kidney stroma. Addition of PlGF to in vitro kidney organ cultures stimulates branching of the ureteric bud. Our observations indicate that PlGF is a direct and physiologically relevant transcriptional target of BF-2. The contribution of PlGF toward stromal signals that regulate epithelial differentiation suggests novel functions for a growth factor previously implicated in reactive angiogenesis
    corecore