2 research outputs found

    Canopy Temperature Depression as an Effective Physiological Trait for Drought Screening

    Get PDF
    Water stress is a major production constraint in agriculture worldwide. Efforts to breed for drought tolerance are invariably hampered by the amount of time required to phenotype a large number of individuals and poor or inconsistent correlations and multiple mechanisms involved. Canopy temperature depression has emerged as a potential surrogate in view of substantial natural variation in crops as well as its correlation with yield. Based on the experimental findings two types of ideotype models based on CTD have been proposed as isohydric (“water saving”) and anisohydric (“water spending”). The isohydrics have advantage in the harsher environments, whereas the anisohydrics perform better under moderate/mild drought situations. Water savers have a shallow root system with intermediate root growth and thin roots. They are early and have high water use efficiency, reduced transpiration and limited leaf area and canopy biomass development and superior photosynthate remobilization to pod and grain. Contrary to this, water spenders have a vigorous and deep rooting system with rapid root growth and a thicker root system. Such genotypes are early and have highly effective water use, moderate transpiration and fast leaf area and canopy biomass development, moderate sink strength and superior photosynthate remobilization to pod and grain formation

    Reactive Oxygen Species, Oxidative Damage and Their Production, Detection in Common Bean (<em>Phaseolus vulgaris</em> L.) under Water Stress Conditions

    Get PDF
    Reactive oxygen species (ROS) being small and highly reactive oxygen containing molecules play significant role in intracellular signaling and regulation. Various environmental stresses lead to excessive production of ROS causing progressive oxidative damage and ultimately cell death. This increased ROS production is, however, tightly controlled by a versatile and cooperative antioxidant system that modulates intracellular ROS concentration and controls the cell’s redox status. Furthermore, ROS enhancement under stress serves as an alarm signal, triggering acclimatory/defense responses via specific signal transduction pathways involving H2O2 as a secondary messenger. Nevertheless, if water stress is prolonged over to a certain extent, ROS production will overwhelm the scavenging action of the anti-oxidant system resulting in extensive cellular damage and death. DAB (3,3′-diaminobenzidine) test serves as an effective assessment of oxidative damage under stress. It clearly differentiates the lines on the basis of darker staining of leaves under water stress. The lines showing greater per cent reduction in yield parameters show greater staining in DAB assay underlining the reliability of using this assay as a reliable supplement to phenotyping protocols for characterizing large germplasm sets
    corecore