29 research outputs found
Effects of chrysotile exposure in human bronchial epithelial cells: Insights into the pathogenic mechanisms of asbestos-related diseases
BACKGROUND: Chrysotile asbestos accounts for > 90% of the asbestos used worldwide, and exposure is associated with asbestosis (asbestos-related fibrosis) and other malignancies; however, the molecular mechanisms involved are not fully understood. A common pathogenic mechanism for these malignancies is represented by epithelial–mesenchymal transition (EMT), through which epithelial cells undergo a morphological transformation to assume a mesenchymal phenotype. In the present work, we propose that chrysotile asbestos induces EMT through a mechanism involving a signaling pathway mediated by tranforming growth factor beta (TGF-β). OBJECTIVES: We investigated the role of chrysotile asbestos in inducing EMT in order to elucidate the molecular mechanisms involved in this event. METHODS: Human bronchial epithelial cells (BEAS-2B) were incubated with 1 μg/cm2 chrysotile asbestos for ≤ 72 hr, and several markers of EMT were investigated. Experiments with specific inhibitors for TGF-β, glycogen synthase kinase–3β (GSK-3β), and Akt were performed to confirm their involvement in asbestos-induced EMT. Real-time polymerase chain reaction (PCR), Western blotting, and gelatin zymography were performed to detect mRNA and protein level changes for these markers. RESULTS: Chrysotile asbestos activated a TGF-β–mediated signaling pathway, implicating the contributions of Akt, GSK-3β, and SNAIL-1. The activation of this pathway in BEAS-2B cells was associated with a decrease in epithelial markers (E-cadherin and β-catenin) and an increase in mesenchymal markers (α-smooth muscle actin, vimentin, metalloproteinases, and fibronectin). CONCLUSIONS: Our findings suggest that chrysotile asbestos induces EMT, a common event in asbestos-related diseases, at least in part by eliciting the TGF-β–mediated Akt/GSK-3β/SNAIL-1 pathway. CITATION: Gulino GR, Polimeni M, Prato M, Gazzano E, Kopecka J, Colombatto S, Ghigo D, Aldieri E. 2016. Effects of chrysotile exposure in human bronchial epithelial cells: insights into the pathogenic mechanisms of asbestos-related diseases. Environ Health Perspect 124:776–784; http://dx.doi.org/10.1289/ehp.140962
Oxygen-loaded nanodroplets effectively abrogate hypoxia dysregulating effects on secretion of MMP-9 and TIMP-1 by human monocytes
Monocytes play a key role in the inflammatory stage of the healing process. To allow monocyte migration to injured tissues, the balances between secreted matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) must be finely modulated. However, a reduction of blood supply and local oxygen tension can modify the phenotype of immune cells. Intriguingly, hypoxia might be targeted by new effective oxygenating devices such as 2H,3H-decafluoropentane- (DFP-) based oxygen-loaded nanodroplets (OLNs). Here, hypoxia effects on gelatinase/TIMP release from human peripheral monocytes were investigated, and the therapeutic potential of dextran-shelled OLNs was evaluated. Normoxic monocytes constitutively released ~500 ng/mL MMP-9, ~1.3 ng/mL TIMP-1, and ~0.6 ng/mL TIMP-2 proteins. MMP-2 was not detected. After 24 hours, hypoxia significantly altered MMP-9/TIMP-1 balance by reducing MMP-9 and increasing TIMP-1, without affecting TIMP-2 secretion. Interestingly OLNs, not displaying toxicity to human monocytes after cell internalization, effectively counteracted hypoxia, restoring a normoxia-like MMP-9/TIMP-1 ratio. The action of OLNs was specifically dependent on time-sustained oxygen diffusion up to 24 h from their DFP-based core. Therefore, OLNs appear as innovative, nonconventional, cost-effective, and nontoxic therapeutic tools, to be potentially employed to restore the physiological invasive phenotype of immune cells in hypoxia-associated inflammation
Oxygen-Loaded Nanodroplets Effectively Abrogate Hypoxia Dysregulating Effects on Secretion of MMP-9 and TIMP-1 by Human Monocytes
Monocytes play a key role in the inflammatory stage of the healing process. To allow monocyte migration to injured tissues, the balances between secreted matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) must be finely modulated. However, a reduction of blood supply and local oxygen tension can modify the phenotype of immune cells. Intriguingly, hypoxia might be targeted by new effective oxygenating devices such as 2H,3H-decafluoropentane- (DFP-) based oxygen-loaded nanodroplets (OLNs). Here, hypoxia effects on gelatinase/TIMP release from human peripheral monocytes were investigated, and the therapeutic potential of dextran-shelled OLNs was evaluated. Normoxic monocytes constitutively released ~500 ng/mL MMP-9, ~1.3 ng/mL TIMP-1, and ~0.6 ng/mL TIMP-2 proteins. MMP-2 was not detected. After 24 hours, hypoxia significantly altered MMP-9/TIMP-1 balance by reducing MMP-9 and increasing TIMP-1, without affecting TIMP-2 secretion. Interestingly OLNs, not displaying toxicity to human monocytes after cell internalization, effectively counteracted hypoxia, restoring a normoxia-like MMP-9/TIMP-1 ratio. The action of OLNs was specifically dependent on time-sustained oxygen diffusion up to 24 h from their DFP-based core. Therefore, OLNs appear as innovative, nonconventional, cost-effective, and nontoxic therapeutic tools, to be potentially employed to restore the physiological invasive phenotype of immune cells in hypoxia-associated inflammation