125 research outputs found

    A multimodality localization technique for radio-guided surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intraoperative localization of image or endoscopy-detected lesions occasionally pose surgical challenges due to the small lesion size and/or difficult anatomic exposure. Identification of such lesions can be facilitated using a hand-held gamma probe with utilization of Tc-99m macroaggregate albumen (MAA) localization technique. The radiopharmaceutical injection can be performed using ultrasound (US) or endoscopy guidance.</p> <p>Case presentations</p> <p>The clinical use of the Tc-99m MAA protocol gamma probe-guided surgery was discussed in three representative cases. Surgical indication was diagnostic exploration in two patients with suspicious lymphadenopathy, and determination of extent of surgical resection in a patient with polyposis. Lesion localization with 100 microcurie (3.7 MBq) Tc-99m MAA prior to surgical exploration resulted in definitive localization of lesions intraoperatively.</p> <p>Conclusion</p> <p>The use Tc-99m MAA deposition technique at the site of surgical target is a highly efficient radio-guided surgery technique with definitive impact on the success of surgical exploration in selected indications.</p

    Preoperative Y-90 microsphere selective internal radiation treatment for tumor downsizing and future liver remnant recruitment: a novel approach to improving the safety of major hepatic resections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extended liver resections are being performed more liberally than ever. The extent of resection of liver metastases, however, is restricted by the volume of the future liver remnant (FLR). An intervention that would both accomplish tumor control and induce compensatory hypertrophy, with good patient tolerability, could improve clinical outcomes.</p> <p>Case presentation</p> <p>A 53-year-old woman with a history of cervical cancer presented with a large liver mass. Subsequent biopsy indicated poorly differentiated carcinoma with necrosis suggestive of squamous cell origin. A decision was made to proceed with pre-operative chemotherapy and Y-90 microsphere SIRT with the intent to obtain systemic control over the disease, downsize the hepatic lesion, and improve the FLR. A surgical exploration was performed six months after the first SIRT (three months after the second). There was no extrahepatic disease. The tumor was found to be significantly decreased in size with central and peripheral scarring. The left lobe was satisfactorily hypertrophied. A formal right hepatic lobectomy was performed with macroscopic negative margins.</p> <p>Conclusion</p> <p>Selective internal radiation treatment (SIRT) with yttrium-90 (Y-90) microspheres has emerged as an effective liver-directed therapy with a favorable therapeutic ratio. We present this case report to suggest that the portal vein radiation dose can be substantially increased with the intent of inducing portal/periportal fibrosis. Such a therapeutic manipulation in lobar Y-90 microsphere treatment could accomplish the end points of PVE with avoidance of the concern regarding tumor progression.</p

    Multimodality approach of perioperative 18F-FDG PET/CT imaging, intraoperative 18F-FDG handheld gamma probe detection, and intraoperative ultrasound for tumor localization and verification of resection of all sites of hypermetabolic activity in a case of occult recurrent metastatic melanoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of diagnostic <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) positron emission tomography/computed tomography (PET/CT) imaging for the staging, restaging, and treatment monitoring of melanoma patients has become a well-recognized standard of care. It plays a key role in detecting sites of occult disease and is widely utilized in the medical and surgical planning of such patients. In the current report, we describe an innovative multimodality approach of perioperative <sup>18</sup>F-FDG PET/CT imaging, intraoperative <sup>18</sup>F-FDG handheld gamma probe detection, and intraoperative ultrasound for tumor localization and verification of resection of all sites of hypermetabolic tumor foci in a case of occult recurrent metastatic melanoma.</p> <p>Case presentation</p> <p>This report discusses a case of occult recurrent metastatic melanoma, isolated to three separate sites within the subcutaneous tissues of the left thigh region, which was not clinically apparent but was found on diagnostic restaging whole body <sup>18</sup>F-FDG PET/CT scan utilizing an intravenous injection of 14.8 mCi <sup>18</sup>F-FDG. Then, on the day of surgery, the patient received an intravenous injection of 12.8 mCi <sup>18</sup>F-FDG. A multimodality approach of intraoperative handheld gamma probe detection, intraoperative ultrasound tumor localization, specimen PET/CT imaging, and postoperative PET/CT imaging was utilized for accomplishing and verifying the excision of all three sites of occult recurrent metastatic melanoma within the left thigh region.</p> <p>Conclusion</p> <p>This innovative multimodality approach of perioperative <sup>18</sup>F-FDG PET/CT imaging, intraoperative <sup>18</sup>F-FDG handheld gamma probe detection, and intraoperative ultrasound is promising combined technology for aiding in tumor localization and verification of excision and may ultimately impact positively upon long-term outcome of selected patients.</p

    Combined approach of perioperative 18F-FDG PET/CT imaging and intraoperative 18F-FDG handheld gamma probe detection for tumor localization and verification of complete tumor resection in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) positron emission tomography/computed tomography (PET/CT) has become an established method for detecting hypermetabolic sites of known and occult disease and is widely used in oncology surgical planning. Intraoperatively, it is often difficult to localize tumors and verify complete resection of tumors that have been previously detected on diagnostic PET/CT at the time of the original evaluation of the cancer patient. Therefore, we propose an innovative approach for intraoperative tumor localization and verification of complete tumor resection utilizing <sup>18</sup>F-FDG for perioperative PET/CT imaging and intraoperative gamma probe detection.</p> <p>Methods</p> <p>Two breast cancer patients were evaluated. <sup>18</sup>F-FDG was administered and PET/CT was acquired immediately prior to surgery. Intraoperatively, tumors were localized and resected with the assistance of a handheld gamma probe. Resected tumors were scanned with specimen PET/CT prior to pathologic processing. Shortly after the surgical procedure, patients were re-imaged with PET/CT utilizing the same preoperatively administered <sup>18</sup>F-FDG dose.</p> <p>Results</p> <p>One patient had primary carcinoma of breast and a metastatic axillary lymph node. The second patient had a solitary metastatic liver lesion. In both cases, preoperative PET/CT verified these findings and demonstrated no additional suspicious hypermetabolic lesions. Furthermore, intraoperative gamma probe detection, specimen PET/CT, and postoperative PET/CT verified complete resection of the hypermetabolic lesions.</p> <p>Conclusion</p> <p>Immediate preoperative and postoperative PET/CT imaging, utilizing the same <sup>18</sup>F-FDG injection dose, is feasible and image quality is acceptable. Such perioperative PET/CT imaging, along with intraoperative gamma probe detection and specimen PET/CT, can be used to verify complete tumor resection. This innovative approach demonstrates promise for assisting the oncologic surgeon in localizing and verifying resection of <sup>18</sup>F-FDG positive tumors and may ultimately positively impact upon long-term patient outcomes.</p

    Safety and efficacy of Y-90 microsphere treatment in patients with primary and metastatic liver cancer: The tumor selectivity of the treatment as a function of tumor to liver flow ratio

    Get PDF
    BACKGROUND: Treatment records and follow-up data on 40 patients with primary and metastatic liver malignancies who underwent a single whole-liver treatment with Y-90 resin microspheres (SIR-Spheres(® )Sirtex Medical, Lake Forest, IL) were retrospectively reviewed. The objective of the study was to evaluate the anatomic and physiologic determinants of radiation dose distribution, and the dose response of tumor and liver toxicity in patients with liver malignancies who underwent hepatic arterial Y-90 resin microsphere treatment. METHODS: Liver and tumor volume calculations were performed on pre-treatment CT scans. Fractional tumor and liver flow characteristics and lung shunt fractions were determined using hepatic arterial Tc-99m MAA imaging. Absorbed dose calculations were performed using the MIRD equations. Liver toxicity was assessed clinically and by liver function tests. Tumor response to therapy was assessed by CT and/or tumor markers. RESULTS: Of the 40 patients, 5 had hepatocellular cancer (HCC), and 35 had metastatic liver tumors (15 colorectal cancer, 10 neuroendocrine tumors, 4 breast cancer, 2 lung cancer, 1 ovarian cancer, 1 endometrial cancer, and 2 unknown primary adenocarcinoma). All patients were treated in a salvage setting with a 3 to 80 week follow-up (mean: 19 weeks). Tumor volumes ranged from 15.0 to 984.2 cc (mean: 294.9 cc) and tumor to normal liver uptake ratios ranged from 2.8 to 15.4 (mean: 5.4). Average administered activity was 1.2 GBq (0.4 to 2.4 GBq). Liver absorbed doses ranged from 0.7 to 99.5 Gy (mean: 17.2 Gy). Tumor absorbed doses ranged from 40.1 to 494.8 Gy (mean: 121.5 Gy). None of the patients had clinical venoocclusive disease or therapy-induced liver failure. Seven patients (17.5 %) had transient and 7 patients (17.5 %) had persistent LFT abnormalities. There were 27 (67.5%) responders (complete response, partial response, and stable disease). Tumor response correlated with higher tumor flow ratio as measured by Tc-99m MAA imaging. CONCLUSION: Doses up to 99.5 Gy to uninvolved liver are tolerated with no clinical venoocclusive disease or liver failure. The lowest tumor dose producing a detectable response is 40.1 Gy. The utilization of MAA-based imaging techniques to determine tumor and liver blood flow for clinical treatment planning and the calculation of administered activity may improve clinical outcomes
    corecore