9 research outputs found
Diagnosing herpesvirus infections by real-time amplification and rapid culture
Procedures using real-time technique were developed to demonstrate the presence of herpes simplex virus type 1 (HSV-1) and HSV-2, varicella zoster virus (VZV), and cytomegalovirus (CMV) in miscellaneous clinical specimens. The assays were compared to rapid culture using centrifugation followed by detection with monoclonal antibodies. A total of 711 consecutive samples were collected from different patient groups. Throat swabs were obtained from transplant patients; dermal or oral specimens were collected from patients suspected for VZV or HSV infection. Genital specimens were taken from patients who attended the Clinic for Sexually Transmitted Diseases at the Dijkzigt Hospital Rotterdam presenting with symptoms of a primary genital ulcer. Nucleic acid extraction was carried out using a MagnaPure LC instrument. The amplification steps were performed on the ABI Prism 7700 sequence detection system. To monitor the process of extraction and amplification, a universal control consisting of seal herpesvirus type 1 (PhHV-1
Discordant detection of avian influenza virus subtypes in time and space between poultry and wild birds; towards improvement of surveillance programs
Avian influenza viruses from wild birds can cause outbreaks in poultry, and occasionally infect humans upon exposure to infected poultry. Identification and characterization of viral reservoirs and transmission routes is important to develop strategies that prevent infection of poultry, and subsequently virus transmission between poultry holdings and to humans. Based on spatial, temporal and phylogenetic analyses of data generated as part of intense and large-scale influenza surveillance programs in wild birds and poultry in the Netherlands from 2006 to 2011, we demonstrate that LPAIV subtype distribution differed between wild birds and poultry, suggestive of host-range restrictions. LPAIV isolated from Dutch poultry were genetically most closely related to LPAIV isolated from wild birds in the Netherlands or occasionally elsewhere in Western Europe. However, a relatively long time interval was observed between the isolations of related viruses from wild birds and poultry. Spatial analyses provided evidence for mallards (Anas platyrhynchos) being more abundant near primary infected poultry farms. Detailed year-round investigation of virus prevalence and wild bird species distribution and behavior near poultry farms should be used to improve risk assessment in relation to avian influenza virus introduction and retarget avian influenza surveillance programs
High quality of SARS-CoV-2 molecular diagnostics in a diverse laboratory landscape through supported benchmark testing and External Quality Assessment
A two-step strategy combining assisted benchmark testing (entry controls) and External Quality Assessments (EQAs) with blinded simulated clinical specimens to enhance and maintain the quality of nucleic acid amplification testing was developed. This strategy was successfully applied to 71 diagnostic laboratories in The Netherlands when upscaling the national diagnostic capacity during the SARS-CoV-2 pandemic. The availability of benchmark testing in combination with advice for improvement substantially enhanced the quality of the laboratory testing procedures for SARS-CoV-2 detection. The three subsequent EQA rounds demonstrated high quality testing with regard to specificity (99.6% correctly identified) and sensitivity (93.3% correctly identified). Even with the implementation of novel assays, changing workflows using diverse equipment and a high degree of assay heterogeneity, the overall high quality was maintained using this two-step strategy. We show that in contrast to the limited value of Cq value for absolute proxies of viral load, these Cq values can, in combination with metadata on strategies and techniques, provide valuable information for laboratories to improve their procedures. In conclusion, our two-step strategy (preparation phase followed by a series of EQAs) is a rapid and flexible system capable of scaling, improving, and maintaining high quality diagnostics even in a rapidly evolving (e.g. pandemic) situation.</p
High quality of SARS-CoV-2 molecular diagnostics in a diverse laboratory landscape through supported benchmark testing and External Quality Assessment
A two-step strategy combining assisted benchmark testing (entry controls) and External Quality Assessments (EQAs) with blinded simulated clinical specimens to enhance and maintain the quality of nucleic acid amplification testing was developed. This strategy was successfully applied to 71 diagnostic laboratories in The Netherlands when upscaling the national diagnostic capacity during the SARS-CoV-2 pandemic. The availability of benchmark testing in combination with advice for improvement substantially enhanced the quality of the laboratory testing procedures for SARS-CoV-2 detection. The three subsequent EQA rounds demonstrated high quality testing with regard to specificity (99.6% correctly identified) and sensitivity (93.3% correctly identified). Even with the implementation of novel assays, changing workflows using diverse equipment and a high degree of assay heterogeneity, the overall high quality was maintained using this two-step strategy. We show that in contrast to the limited value of Cq value for absolute proxies of viral load, these Cq values can, in combination with metadata on strategies and techniques, provide valuable information for laboratories to improve their procedures. In conclusion, our two-step strategy (preparation phase followed by a series of EQAs) is a rapid and flexible system capable of scaling, improving, and maintaining high quality diagnostics even in a rapidly evolving (e.g. pandemic) situation.</p
Development and implementation of real-time nucleic acid amplification for the detection of enterovirus infections in comparison to rapid culture of various clinical specimens
Several real-time PCR and nucleic acid sequence-based amplification (NASBA) primer pairs and a modified real-time PCR primer pair for the detection of enteroviruses were compared. The modified real-time PCR primer pair was evaluated on clinical samples in comparison with cell culture using the MagnaPure LC Isolation instrument for nucleic acid extraction. Six hundred forty samples could be examined both by cell culture and real-time PCR. Faecal specimens (n = 285), cerebrospinal fluid (n = 210), throat swabs (n = 113), biopsies (n = 1--, vesicular fluid (n = 11), and pleural fluid specimens (n = 9) were included. By culture, 26/640 (4%) samples were positive for enterovirus. By real-time PCR, the number of positive specimens was 50 (7.8%). Of the 210 cerebrospinal fluid samples, three were positive by culture and nine by real-time PCR. Seventeen and 33 of a total of 285 faecal specimens were positive by culture and real-time PCR, respectively. In case of discrepant results, the clinical symptoms were in accordance with an infection due to enteroviruses. Genotyping using the VP1 gene correlated with serotyping by neutralization. In contrast, six of the 19 specimens that could be typed both by neutralization and by sequencing using the VP4 domain yielded a different genotype, yet within the same species. Real-time PCR turned out to be suitable for the detection of enteroviruses in the daily routine setting. In comparison to rapid culture, it offers a rapid, more sensitive, and reliable assay; especially in cerebrospinal fluid, the yield of enteroviruses is much higher
Practical Considerations for High-Throughput Influenza A Virus Surveillance Studies of Wild Birds by Use of Molecular Diagnostic Tests â–¿
Influenza A virus surveillance studies of wild bird populations are essential to improving our understanding of the role of wild birds in the ecology of low-pathogenic avian influenza viruses and their potential contribution to the spread of H5N1 highly pathogenic avian influenza viruses. Whereas the primary results of such surveillance programs have been communicated extensively, practical considerations and technical implementation options generally receive little attention. In the present study, the data obtained from 39,490 samples were used to compare the impacts of variables such as the sampling procedure, storage and transport conditions, and the choice of molecular and classical diagnostic tests on the outcome of the results. Molecular diagnostic tests allowed estimation of the virus load in samples, which has implications for the ability to isolate virus. Virus isolation in embryonated eggs was more sensitive than virus isolation in cell cultures. Storage and transport conditions had less of an impact on diagnostics by the use of molecular tests than by the use of classical approaches. These findings indicate that molecular diagnostic tests are more sensitive and more reliable than classical tests. In addition, molecular diagnostic tests facilitated analyses in real time and allowed the discrimination of H5 influenza viruses with low and high pathogenicities without the need for virus isolation. Critical assessment of the methods used in large surveillance studies like this will facilitate comparison of the results between studies. Moreover, the lessons learned from current large-scale influenza A virus surveillance activities could be valuable for other pathogen surveillance programs in the future
Evaluation of a rapid molecular algorithm for detection of pandemic influenza A (H1N1) 2009 virus and screening for a key oseltamivir resistance (H275Y) substitution in neuraminidase
Background: Rapid and specific molecular tests for identification of the recently identified pandemic influenza A/H1N1 2009 virus as well as rapid molecular tests to identify antiviral resistant strains are urgently needed. Objectives: We have evaluated the performance of two novel reverse transcriptase polymerase chain reactions (RT-PCRs) targeting specifically hemagglutinin and neuraminidase of pandemic influenza A/H1N1 virus in combination with a conserved matrix PCR. In addition, we investigated the performance of a novel discrimination RT-PCR for detection of the H275Y resistance mutation in the neuraminidase gene. Study design: Clinical performance of both subtype specific RT-PCR assays was evaluated through analysis of 684 throat swaps collected from individuals meeting the WHO case definition for the novel pandemic influenza virus. Analytical performance was analyzed through testing of 10-fold serial dilutions of RNA derived from the first Dutch sequenced and cultured confirmed case of novel pandemic influenza infection. Specificity and discriminative capacities of the H275Y discrimination assay were performed by testing wild type and recombinant H275Y pandemic influenza. Results: 121 throat swaps collected from April 2009 to July 2009 were positive by at least two out of three RT-PCRs, and negative for the seasonal H3/H1 subtype specific RT-PCR assays. 117 of these were tested positive for all three (Ct-values from 15.1 to 36.8). No oseltamivir resistance was detected. Conclusions: We present a sensitive and specific approach for detection of pandemic influenza A/H1N1 2009 and a rapid RT-PCR assay detecting a primary oseltamivir resistance mutation which can be incorporated easily into clinical virology algorithms. (C) 2009 Elsevier B.V. All rights reserved