284 research outputs found

    Spectral and Spin Measurement of Two Small and Fast-Rotating Near-Earth Asteroids

    Full text link
    In May 2012 two asteroids made near-miss "grazing" passes at distances of a few Earth-radii: 2012 KP24 passed at nine Earth-radii and 2012 KT42 at only three Earth-radii. The latter passed inside the orbital distance of geosynchronous satellites. From spectral and imaging measurements using NASA's 3-m Infrared Telescope Facility (IRTF), we deduce taxonomic, rotational, and physical properties. Their spectral characteristics are somewhat atypical among near-Earth asteroids: C-complex for 2012 KP24 and B-type for 2012 KT42, from which we interpret the albedos of both asteroids to be between 0.10 and 0.15 and effective diameters of 20+-2 and 6+-1 meters, respectively. Among B-type asteroids, the spectrum of 2012 KT42 is most similar to 3200 Phaethon and 4015 Wilson-Harrington. Not only are these among the smallest asteroids spectrally measured, we also find they are among the fastest-spinning: 2012 KP24 completes a rotation in 2.5008+-0.0006 minutes and 2012 KT42 rotates in 3.634+-0.001 minutes.Comment: 4 pages, 3 figures, accepted for publication in Icaru

    Buoyancy waves in Pluto's high atmosphere: Implications for stellar occultations

    Get PDF
    We apply scintillation theory to stellar signal fluctuations in the high-resolution, high signal/noise, dual-wavelength data from the MMT observation of the 2007 March 18 occultation of P445.3 by Pluto. A well-defined high wavenumber cutoff in the fluctuations is consistent with viscous-thermal dissipation of buoyancy waves (internal gravity waves) in Pluto's high atmosphere, and provides strong evidence that the underlying density fluctuations are governed by the gravity-wave dispersion relation.Comment: Accepted 18 June 2009 for publication in Icaru

    Charon's radius and density from the combined data sets of the 2005 July 11 occultation

    Full text link
    The 2005 July 11 C313.2 stellar occultation by Charon was observed by three separate research groups, including our own, at observatories throughout South America. Here, the published timings from the three data sets have been combined to more accurately determine the mean radius of Charon: 606.0 +/- 1.5 km. Our analysis indicates that a slight oblateness in the body (0.006 +/- 0.003) best matches the data, with a confidence level of 86%. The oblateness has a pole position angle of 71.4 deg +/- 10.4 deg and is consistent with Charon's pole position angle of 67 deg. Charon's mean radius corresponds to a bulk density of 1.63 +/- 0.07 g/cm3, which is significantly less than Pluto's (1.92 +/- 0.12 g/cm3). This density differential favors an impact formation scenario for the system in which at least one of the impactors was differentiated. Finally, unexplained differences between chord timings measured at Cerro Pachon and the rest of the data set could be indicative of a depression as deep as 7 km on Charon's limb.Comment: 25 pages including 4 tables and 2 figures. Submitted to the Astronomical Journal on 2006 Feb 0

    De-biased Populations of Kuiper Belt Objects from the Deep Ecliptic Survey

    Full text link
    The Deep Ecliptic Survey (DES) discovered hundreds of Kuiper Belt objects from 1998-2005. Follow-up observations yielded 304 objects with good dynamical classifications (Classical, Scattered, Centaur, or 16 mean-motion resonances with Neptune). The DES search fields are well documented, enabling us to calculate the probability of detecting objects with particular orbital parameters and absolute magnitudes at a randomized point in each orbit. Grouping objects together by dynamical class leads, we estimate the orbital element distributions (a, e, i) for the largest three classes (Classical, 3:2, and Scattered) using maximum likelihood. Using H-magnitude as a proxy for the object size, we fit a power law to the number of objects for 8 classes with at least 5 detected members (246 objects). The best Classical slope is alpha=1.02+/-0.01 (observed from 5<=H<=7.2). Six dynamical classes (Scattered plus 5 resonances) are consistent in slope with the Classicals, though the absolute number of objects is scaled. The exception to the power law relation are the Centaurs (non-resonant with perihelia closer than Neptune, and thus detectable at smaller sizes), with alpha=0.42+/-0.02 (7.5<H<11). This is consistent with a knee in the H-distribution around H=7.2 as reported elsewhere (Bernstein et al. 2004, Fraser et al. 2014). Based on the Classical-derived magnitude distribution, the total number of objects (H<=7) in each class are: Classical (2100+/-300 objects), Scattered (2800+/-400), 3:2 (570+/-80), 2:1 (400+/-50), 5:2 (270+/-40), 7:4 (69+/-9), 5:3 (60+/-8). The independent estimate for the number of Centaurs in the same H range is 13+/-5. If instead all objects are divided by inclination into "Hot" and "Cold" populations, following Fraser et al. (2014), we find that alphaHot=0.90+/-0.02, while alphaCold=1.32+/-0.02, in good agreement with that work.Comment: 26 pages emulateapj, 6 figures, 5 tables, accepted by A

    Properties of the solar neighbor WISE J072003.20-084651.2

    Get PDF
    The severe crowding towards the Galactic plane suggests that the census of nearby stars in that direction may be incomplete. Recently, Scholz reported a new M9 object at an estimated distance d~7 pc (WISE J072003.20-084651.2; hereafter WISE0720) at Galactic latitude b=2.3 degr. Our goals are to determine the physical characteristics of WISE0720, its kinematic properties, and to address the question if it is a binary object, as suggested in the discovery paper. Optical and infrared spectroscopy from the Southern African Large Telescope and Magellan, respectively, and spectral energy distribution fitting were used to determine the spectral type of WISE0720. The measured radial velocity, proper motion and parallax yielded its Galactic velocities. We also investigated if WISE0720 may show X-ray activity based on archival data. Our spectra are consistent with spectral type L0+/-1. We find no evidence for binarity, apart for a minor 2-sigma level difference in the radial velocities taken at two different epochs. The spatial velocity of WISE0720 does not connect it to any known moving group, instead it places the object with high probability in the old thin disk or in the thick disk. The spectral energy distribution fit hints at excess in the 12 and 22 micron WISE bands which may be due to a redder companion, but the same excess is visible in other late type objects, and it more likely implies a shortcoming of the models (e.g., issues with the effective wavelengths of the filters for these extremely cool objects, etc.) rather than a disk or redder companion. The optical spectrum shows some Halpha emission, indicative of stellar activity. Archival X-ray observations yield no detection.Comment: A&A, accepted; 9 pages, 6 figure

    Twenty-One New Light Curves of OGLE-TR-56b: New System Parameters and Limits on Timing Variations

    Get PDF
    Although OGLE-TR-56b was the second transiting exoplanet discovered, only one light curve, observed in 2006, has been published besides the discovery data. We present twenty-one light curves of nineteen different transits observed between July 2003 and July 2009 with the Magellan Telescopes and Gemini South. The combined analysis of the new light curves confirms a slightly inflated planetary radius relative to model predictions, with R_p = 1.378 +/- 0.090 R_J. However, the values found for the transit duration, semimajor axis, and inclination values differ significantly from the previous result, likely due to systematic errors. The new semimajor axis and inclination, a = 0.01942 +/- 0.00015 AU and i = 73.72 +/- 0.18 degrees, are smaller than previously reported, while the total duration, T_14 = 7931 +/- 38 s, is 18 minutes longer. The transit midtimes have errors from 23 s to several minutes, and no evidence is seen for transit midtime or duration variations. Similarly, no change is seen in the orbital period, implying a nominal stellar tidal decay factor of Q_* = 10^7, with a three-sigma lower limit of 10^5.7.Comment: 14 pages, 5 figures, accepted to Ap

    CC Sculptoris: A superhumping intermediate polar

    Full text link
    We present high speed optical, spectroscopic and Swift X-ray observations made during the dwarf nova superoutburst of CC Scl in November 2011. An orbital period of 1.383 h and superhump period of 1.443 h were measured, but the principal new finding is that CC Scl is a previously unrecognised intermediate polar, with a white dwarf spin period of 389.49 s which is seen in both optical and Swift X-ray light curves only during the outburst. In this it closely resembles the old nova GK Per, but unlike the latter has one of the shortest orbital periods among intermediate polars.Comment: Accepted for publication in MNRAS; 11 pages, 19 figure

    Hepcidin and iron species distribution inside the first-trimester human gestational sac

    Get PDF
    We have investigated factors affecting iron distribution in the first-trimester gestational sac, by the measurement of transferrin, non-transferrin-bound iron (NTBI) and pro-hepcidin (Hep) in maternal serum, coelomic fluid (CF) and amniotic fluid (AF) and by immunostaining for Hep in villous and secondary yolk sac biopsies. These samples were obtained from 15 first-trimester pregnancies at 8–11 weeks gestation. Transferrin concentrations were significantly lower in fetal (0.56 mg/ml) than maternal serum (1.71 mg/ml), with very low concentrations in CF and AF (0.09 mg/ml). In contrast, transferrin saturations were significantly higher in fetal (77%) than maternal serum (33%). NTBI was present in fetal serum, CF and AF, presumably as a consequence of low transferrin concentrations in these compartments. Pro-Hep was present at lower levels in fetal (140.0 ± 11.1) than maternal serum (206.2 ± 9.2) and at low concentrations in CF (19.4 ± 3.1) and AF (21.8 ± 5.2). Immunostaining with Hep antibody was found in the syncytiotrophoblast of first-trimester placenta as well as in mesothelial and endodermal layers of the secondary yolk sac at 10 weeks. The presence of Hep in syncytiotrophoblast cells of first-trimester placenta as well as in mesothelial and endodermal layers of the secondary yolk sac suggest a key regulatory role for this protein in iron transfer to the first-trimester fetus. The low transferrin concentrations and the presence of NTBI in CF and AF suggest that transferrin-independent iron transfer is important in early gestation

    Acceleressence: Dark Energy from a Phase Transition at the Seesaw Scale

    Full text link
    Simple models are constructed for "acceleressence" dark energy: the latent heat of a phase transition occurring in a hidden sector governed by the seesaw mass scale v^2/M_Pl, where v is the electroweak scale and M_Pl the gravitational mass scale. In our models, the seesaw scale is stabilized by supersymmetry, implying that the LHC must discover superpartners with a spectrum that reflects a low scale of fundamental supersymmetry breaking. Newtonian gravity may be modified by effects arising from the exchange of fields in the acceleressence sector whose Compton wavelengths are typically of order the millimeter scale. There are two classes of models. In the first class the universe is presently in a metastable vacuum and will continue to inflate until tunneling processes eventually induce a first order transition. In the simplest such model, the range of the new force is bounded to be larger than 25 microns in the absence of fine-tuning of parameters, and for couplings of order unity it is expected to be \approx 100 microns. In the second class of models thermal effects maintain the present vacuum energy of the universe, but on further cooling, the universe will "soon" smoothly relax to a matter dominated era. In this case, the range of the new force is also expected to be of order the millimeter scale or larger, although its strength is uncertain. A firm prediction of this class of models is the existence of additional energy density in radiation at the eV era, which can potentially be probed in precision measurements of the cosmic microwave background. An interesting possibility is that the transition towards a matter dominated era has occurred in the very recent past, with the consequence that the universe is currently decelerating.Comment: 10 pages, references adde
    corecore