45 research outputs found

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Evaluation of the Liquisolid Compacts Using Response Surface Methodology

    Get PDF
    Liquisolid Compacts technique has potential to develop sustained release formulations. It involves conversion of liquid drug (either solution or suspension) in non-volatile solvent into free-flowing, non adherent, dry looking and readily compressible powder. In the present work, an attempt was made to develop such formulation of Diltiazem HCl and evaluation using Response surface methodology. Liquisolid compacts were prepared by dissolving Diltiazem HCl in Polyethylene Glycol 400. Then a binary mixture of carrier-coating material, Avicel and Aerosil, was added to liquid medication under continuous mixing in mortar. The HPMC K4M was used as adjuvant for sustaining the drug release.  The pre-compression studies for all the formulations were also carried out. The Liquisolid compacts were evaluated in-vitro dissolution studies. The experimental data was evaluated using Design Expert Software. The % Drug Concentration, ratio of Carrier to Coating material and amount of HPMC K4M are taken as three factors. Response Surface methodology was used to study the influence of the each factor on the response. The present investigation showed that Polyethylene Glycol 400 has important role in release retardation of drug in Liquisolid compacts. The reduction in Tg can be reason for same. The Response surface methodology showed that all the factors were significantly affect the release at 16 hrs.

    Evaluation of the Liquisolid Compacts Using Response Surface Methodology

    Get PDF
    Liquisolid Compacts technique has potential to develop sustained release formulations. It involves conversion of liquid drug (either solution or suspension) in non-volatile solvent into free-flowing, non adherent, dry looking and readily compressible powder. In the present work, an attempt was made to develop such formulation of Diltiazem HCl and evaluation using Response surface methodology. Liquisolid compacts were prepared by dissolving Diltiazem HCl in Polyethylene Glycol 400. Then a binary mixture of carrier-coating material, Avicel and Aerosil, was added to liquid medication under continuous mixing in mortar. The HPMC K4M was used as adjuvant for sustaining the drug release.  The pre-compression studies for all the formulations were also carried out. The Liquisolid compacts were evaluated in-vitro dissolution studies. The experimental data was evaluated using Design Expert Software. The % Drug Concentration, ratio of Carrier to Coating material and amount of HPMC K4M are taken as three factors. Response Surface methodology was used to study the influence of the each factor on the response. The present investigation showed that Polyethylene Glycol 400 has important role in release retardation of drug in Liquisolid compacts. The reduction in Tg can be reason for same. The Response surface methodology showed that all the factors were significantly affect the release at 16 hrs.

    REMOVAL OF OXALATES BY BANANA PEEL EXTRACT TREATMENT REMOVAL OF OXALATES BY BANANA PEEL EXTRACT TREATMENT

    No full text
    ABSTRACT KEYWORDS: Banana Peel Extract (BPE), Oxalates, Oxalate Oxidase Enzyme Oxalates are naturally-occurring substances found in plants, animals, and in human. Our bodies always contain oxalates For example, vitamin C is one of the substances that our cells The thorny hairs & rough leaves m part and example of resources are summarized below
    corecore