4 research outputs found

    Study of Heat Dissipation Mechanism in Nanoscale MOSFETs Using BDE Model

    Get PDF
    In this chapter, we report the nano-heat transport in metal-oxide-semiconductor field effect transistor (MOSFET). We propose a ballistic-diffusive model (BDE) to inquire the thermal stability of nanoscale MOSFET’s. To study the mechanism of scattering in the interface oxide-semiconductor, we have included the specularity parameter defined as the probability of reflection at boundary. In addition, we have studied the effective thermal conductivity (ETC) in nanofilms we found that ETC depend with the size of nanomaterial. The finite element method (FEM) is used to resolve the results for a 10 nm channel length. The results prove that our proposed model is close to those results obtained by the Boltzmann transport equation (BTE)

    SOFC modelling considering radiation heat transfer

    No full text
    In this study, the influence of radiation heat transfer within a planar SOFC is investigated. The numerical model is made by performing two-dimension mathematical model describing mass, momentum and heat transport phenomena coupled with electrochemical reactions. The finite volume method is used to solve the governing equations. Compared with literature results, the simulations show that radiation reduces temperature gradients and has a significant effect on enhancing heat transfer within the SOFC and counter balancing thermal dissipation induced by activation, concentration and ohmic polarisations. Thus, it must be included for an accurate model
    corecore