2 research outputs found
Towards Flexible and Cognitive Production—Addressing the Production Challenges
Globalization in the field of industry is fostering the need for cognitive production systems. To implement modern concepts that enable tools and systems for such a cognitive production system, several challenges on the shop floor level must first be resolved. This paper discusses the implementation of selected cognitive technologies on a real industrial case-study of a construction machine manufacturer. The partner company works on the concept of mass customization but utilizes manual labour for the high-variety assembly stations or lines. Sensing and guidance devices are used to provide information to the worker and also retrieve and monitor the working, with respecting data privacy policies. Next, a specified process of data contextualization, visual analytics, and causal discovery is used to extract useful information from the retrieved data via sensors. Communications and safety systems are explained further to complete the loop of implementation of cognitive entities on a manual assembly line. This deepened involvement of cognitive technologies are human-centered, rather than automated systems. The explained cognitive technologies enhance human interaction with the processes and ease the production methods. These concepts form a quintessential vision for an effective assembly line. This paper revolutionizes the existing industry 4.0 with an even-intensified human–machine interaction and moving towards cognitivity
System Design for Sensing in Manufacturing to Apply AI through Hierarchical Abstraction Levels
Activity recognition combined with artificial intelligence is a vital area of research, ranging across diverse domains, from sports and healthcare to smart homes. In the industrial domain, and the manual assembly lines, the emphasis shifts to human–machine interaction and thus to human activity recognition (HAR) within complex operational environments. Developing models and methods that can reliably and efficiently identify human activities, traditionally just categorized as either simple or complex activities, remains a key challenge in the field. Limitations of the existing methods and approaches include their inability to consider the contextual complexities associated with the performed activities. Our approach to address this challenge is to create different levels of activity abstractions, which allow for a more nuanced comprehension of activities and define their underlying patterns. Specifically, we propose a new hierarchical taxonomy for human activity abstraction levels based on the context of the performed activities that can be used in HAR. The proposed hierarchy consists of five levels, namely atomic, micro, meso, macro, and mega. We compare this taxonomy with other approaches that divide activities into simple and complex categories as well as other similar classification schemes and provide real-world examples in different applications to demonstrate its efficacy. Regarding advanced technologies like artificial intelligence, our study aims to guide and optimize industrial assembly procedures, particularly in uncontrolled non-laboratory environments, by shaping workflows to enable structured data analysis and highlighting correlations across various levels throughout the assembly progression. In addition, it establishes effective communication and shared understanding between researchers and industry professionals while also providing them with the essential resources to facilitate the development of systems, sensors, and algorithms for custom industrial use cases that adapt to the level of abstraction