77 research outputs found
Functional biodiversity and plasticity of methanogenic biomass from a full-scale mesophilic anaerobic digester treating nitrogen-rich agricultural wastes
The effect of ammonia on methanogenic biomass from a full-scale agricultural digester treating nitrogen-rich materials was characterized in batch activity assays subjected to increasing concentrations of total ammonia N. Acetotrophic and methanogenic profiles displayed prolonged lag phases and reduced specific activity rates at 6.0 gN-TAN L−1, though identical methane yields were ultimately reached. These results agreed with the expression levels of selected genes from bacteria and methanogenic archaea (qPCR of 16S rRNA and mrcA cDNA transcripts). Compound-specific isotope analysis of biogas indicated that ammonia exposure was associated to a transition in methanogenic activity from acetotrophy at 1.0 gN-TAN L−1 to intermediate and complete hydrogenotrophy at 3.5 and 6.0 gN-TAN L−1. Such pattern matched the results of 16S-Illumina sequencing of genes and transcripts in that predominant methanogens shifted, along with increasing ammonia, from the obligate acetotroph Methanosaeta to the hydrogenotrophic Methanoculleus and the poorly understood methylotrophic Methanomassiliicoccus. The underlying bacterial community structure remained rather stable but, at 6.0 gN-TAN L−1, the expression level increased considerably for a number of ribotypes that are related to potentially syntrophic genera (e.g. Clostridium, Bellilinea, Longilinea, and Bacteroides). The predominance of hydrogenotrophy at high ammonia levels clearly points to the occurrence of the syntrophic acetate oxidation (SAO), but known SAO bacteria were only found in very low numbers. The potential role of the identified bacterial and archaeal taxa with a view on SAO and on stability of the anaerobic digestion process under ammonia stress has been discussed.info:eu-repo/semantics/acceptedVersio
Vitamin B12 effects on chlorinated methanes-degrading microcosms: Dual isotope and metabolically active microbial populations assessment
Field-derived anoxic microcosms were used to characterize chloroform (CF) and carbon tetrachloride (CT) natural attenuation to compare it with biostimulation scenarios in which vitamin B12 was added (B12/pollutant ratio of 0.01 and 0.1) by means of by-products, carbon and chlorine compound-specific stable-isotope analysis, and the active microbial community through 16S rRNA MiSeq high-throughput sequencing. Autoclaved slurry controls discarded abiotic degradation processes. B12 catalyzed CF and CT biodegradation without the accumulation of dichloromethane, carbon disulphide, or CF. The carbon isotopic fractionation value of CF (ƐCCF) with B12 was − 14 ± 4 , and the value for chlorine (ƐClCF) was − 2.4 ± 0.4 . The carbon isotopic fractionation values of CT (ƐCCT) were − 16 ± 6 with B12, and − 13 ± 2 without B12; and the chlorine isotopic fractionation values of CT (ƐClCT) were − 6 ± 3 and − 4 ± 2 , respectively. Acidovorax, Ancylobacter, and Pseudomonas were the most metabolically active genera, whereas Dehalobacter and Desulfitobacterium were below 0.1% of relative abundance. The dual C-Cl element isotope slope (Λ = Δδ13C/Δδ37Cl) for CF biodegradation (only detected with B12, 7 ± 1) was similar to that reported for CF reduction by Fe(0) (8 ± 2). Several reductive pathways might be competing in the tested CT scenarios, as evidenced by the lack of CF accumulation when B12 was added, which might be linked to a major activity of Pseudomonas stutzeri; by different chlorine apparent kinetic isotope effect values and Λ which was statistically different with and without B12 (5 ± 1 vs 6.1 ± 0.5), respectively. Thus, positive B12 effects such as CT and CF degradation catalyst were quantified for the first time in isotopic terms, and confirmed with the major activity of species potentially capable of their degradation. Moreover, the indirect benefits of B12 on the degradation of chlorinated ethenes were proved, creating a basis for remediation strategies in multi-contaminant polluted sites
Methylglyoxal Produced by Amyloid- Peptide-Induced Nitrotyrosination of Triosephosphate Isomerase Triggers Neuronal Death in Alzheimer’s Disease
Amyloid-β peptide (Aβ) aggregates induce nitro-oxidative stress, contributing to the characteristic neurodegeneration found in Alzheimer's disease (AD). One of the most strongly nitrotyrosinated proteins in AD is the triosephosphate isomerase (TPI) enzyme which regulates glycolytic flow, and its efficiency decreased when it is nitrotyrosinated. The main aims of this study were to analyze the impact of TPI nitrotyrosination on cell viability and to identify the mechanism behind this effect. In human neuroblastoma cells (SH-SY5Y), we evaluated the effects of Aβ42 oligomers on TPI nitrotyrosination. We found an increased production of methylglyoxal (MG), a toxic byproduct of the inefficient nitro-TPI function. The proapoptotic effects of Aβ42 oligomers, such as decreasing the protective Bcl2 and increasing the proapoptotic caspase-3 and Bax, were prevented with a MG chelator. Moreover, we used a double mutant TPI (Y165F and Y209F) to mimic nitrosative modifications due to Aβ action. Neuroblastoma cells transfected with the double mutant TPI consistently triggered MG production and a decrease in cell viability due to apoptotic mechanisms. Our data show for the first time that MG is playing a key role in the neuronal death induced by Aβ oligomers. This occurs because of TPI nitrotyrosination, which affects both tyrosines associated with the catalytic center
Factors associated with therapeutic response in acromegaly diagnosed in the elderly in Spain
ContextSome reports suggest that acromegaly in elderly patients has a more benign clinical behavior and could have a better response to first-generation long-acting somatostatin receptor ligands (SRL). However, there is no specific therapeutic protocol for this special subgroup of patients. ObjectiveThis study aimed at identifying predictors of response to SRL in elderly patients. DesignMulticentric retrospective nationwide study of patients diagnosed with acromegaly at or over the age of 65 years. ResultsOne-hundred and eighteen patients (34 men, 84 women, mean age at diagnosis 71.7 +/- 5.4 years old) were included. Basal insulin-like growth factor type 1 (IGF-1) above the upper limit of normal (ULN) and growth hormone (GH) levels (mean +/- SD) were 2.7 +/- 1.4 and 11.0 +/- 11.9 ng/ml, respectively. The mean maximal tumor diameter was 12.3 +/- 6.4 mm, and up to 68.6% were macroadenoma. Seventy-two out of 118 patients (61.0%) underwent surgery as primary treatment. One-third of patients required first-line medical treatment due to a rejection of surgical treatment or non-suitability because of high surgical risk. After first-line surgery, 45/72 (63.9%) were in disease remission, and 16/34 (46.7%) of those treated with SRL had controlled disease. Patients with basal GH at diagnosis <= 6 ng/ml had lower IGF-1 levels and had smaller tumors, and more patients in this group reached control with SRL (72.7% vs. 33.3%; p < 0.04) [OR: 21.3, IC: 95% (2.4-91.1)], while male patients had a worse response [OR: 0.09, IC 95% (0.01-0.75)]. The predictive model curve obtained for SRL response showed an AUC of 0.82 CI (0.71-0.94). ConclusionsThe most frequent phenotype in newly diagnosed acromegaly in the elderly includes small adenomas and moderately high IGF-1 levels. GH at diagnosis <= 6 ng/ml and female gender, but not age per se, were associated with a greater chance of response to SRL
Use of biological based therapy in patients with cardiovascular diseases in a university-hospital in New York City
BACKGROUND: The use of complementary and alternative products including Biological Based Therapy (BBT) has increased among patients with various medical illnesses and conditions. The studies assessing the prevalence of BBT use among patients with cardiovascular diseases are limited. Therefore, an evaluation of BBT in this patient population would be beneficial. This was a survey designed to determine the effects of demographics on the use of Biological Based Therapy (BBT) in patients with cardiovascular diseases. The objective of this study was to determine the effect of the education level on the use of BBT in cardiovascular patients. This survey also assessed the perceptions of users regarding the safety/efficacy of BBT, types of BBT used and potential BBT-drug interactions. METHOD: The survey instrument was designed to assess the findings. Patients were interviewed from February 2001 to December 2002. 198 inpatients with cardiovascular diseases (94 BBT users and 104 non-users) in a university hospital were included in the study. RESULTS: Users had a significantly higher level of education than non-users (college graduate: 28 [30%] versus 12 [12%], p = 0.003). Top 10 BBT products used were vitamin E [41(43.6%)], vitamin C [30(31.9%)], multivitamins [24(25.5%)], calcium [19(20.2%)], vitamin B complex [17(18.1%)], fish oil [12(12.8%)], coenzyme Q10 [11(11.7%)], glucosamine [10(10.6%)], magnesium [8(8.5%)] and vitamin D [6(6.4%)]. Sixty percent of users' physicians knew of the BBT use. Compared to non-users, users believed BBT to be safer (p < 0.001) and more effective (p < 0.001) than prescription drugs. Forty-two potential drug-BBT interactions were identified. CONCLUSION: Incidence of use of BBT in cardiovascular patients is high (47.5%), as is the risk of potential drug interaction. Health care providers need to monitor BBT use in patients with cardiovascular diseases
Visualization and Analysis of 3D Microscopic Images
In a wide range of biological studies, it is highly desirable to visualize and analyze three-dimensional (3D) microscopic images. In this primer, we first introduce several major methods for visualizing typical 3D images and related multi-scale, multi-time-point, multi-color data sets. Then, we discuss three key categories of image analysis tasks, namely segmentation, registration, and annotation. We demonstrate how to pipeline these visualization and analysis modules using examples of profiling the single-cell gene-expression of C. elegans and constructing a map of stereotyped neurite tracts in a fruit fly brain
Nutraceutical therapies for atherosclerosis
Atherosclerosis is a chronic inflammatory disease affecting large and medium arteries and is considered to be a major underlying cause of cardiovascular disease (CVD). Although the development of pharmacotherapies to treat CVD has contributed to a decline in cardiac mortality in the past few decades, CVD is estimated to be the cause of one-third of deaths globally. Nutraceuticals are natural nutritional compounds that are beneficial for the prevention or treatment of disease and, therefore, are a possible therapeutic avenue for the treatment of atherosclerosis. The purpose of this Review is to highlight potential nutraceuticals for use as antiatherogenic therapies with evidence from in vitro and in vivo studies. Furthermore, the current evidence from observational and randomized clinical studies into the role of nutraceuticals in preventing atherosclerosis in humans will also be discussed
- …