56 research outputs found

    Startup strategy for nitrogen removal via nitrite in a BAF system

    Get PDF
    A biological aerated filter (BAF) pilot plant consisting of two reactors (aerobic and anoxic one) was used to determine a strategy to remove nitrogen via nitrite. RNA/DNA analysis was performed to assess microbial activity and support chemical results. In less than 13 days the pilot plant was able to remove COD and suspended solids. Nitrogen removal via nitrite pathway could not be observed until day 130 when the empty bed contact time (EBCT) was set at 0.71 h. Nitrite was detected in the aerated BAF effluent but never nitrate. qPCR of amoA gene from RNA and DNA extracts of the aerobic biofilm confirmed that ammonia oxidizing bacteria (AOB) were present from the beginning of the operation but not active. AOB activity increased with time, reaching stability from operational day 124. The combination of both, low EBCT together with high OLR, has been demonstrated to be a feasible strategy to startup a BAF to achieve nitrogen removal via nitrite.info:eu-repo/semantics/submittedVersio

    Unraveling the active microbial populations involved in nitrogen utilization in a vertical subsurface flow constructed wetland treating urban wastewater

    Get PDF
    The dynamics of the active microbial populations involved in nitrogen transformation in a vertical subsurface flow constructed wetland (VF) treating urban wastewater was assessed. The wetland (1.5 m2) operated under average loads of 130 g COD m- 2 d- 1 and 17 g TN m- 2 d- 1 in Period I, and 80 g COD m- 2 d- 1 and 19 g TN m- 2 d- 1 in Period II. The hydraulic loading rate (HLR) was 375 mm d- 1 and C/N ratio was 2 in both periods. Samples for microbial characterization were collected from the filter medium (top and bottom layers) of the wetland, water influent and effluent at the end of Periods I (Jun–Oct) and II (Nov–Jan). The combination of qPCR and high-throughput sequencing (NGS, MiSeq) assessment at DNA and RNA level of 16S rRNA genes and nitrogen-based functional genes (amoA and nosZ-clade I) revealed that nitrification was associated both with ammonia-oxidizing bacteria (AOB) (Nitrosospira) and ammonia-oxidizing archaea (AOA) (Nitrososphaeraceae), and nitrite-oxidizing bacteria (NOB) such as Nitrobacter. Considering the active abundance (based in amoA transcripts), the AOA population revealed to be more stable than AOB in both periods and depths of the wetland, being less affected by the organic loading rate (OLR). Although denitrifying bacteria (nosZ copies and transcripts) were actively detected in all depths, the denitrification process was low (removal of 2 g TN m- 2 d- 1 for both periods) concomitant with NOx-N accumulation in the effluent. Overall, AOA, AOB and denitrifying bacteria (nosZ) were observed to be more active in bottom than in top layer at lower OLR (Period II). A proper design of OLR and HLR seems to be crucial to control the activity of microbial biofilms in VF wetlands on the basis of oxygen, organic-carbon and NOx-N forms, to improve their capacity for total nitrogen removal.Peer ReviewedPostprint (author's final draft

    Bioaugmentation of Native Fungi, an Efficient Strategy for the Bioremediation of an Aged Industrially Polluted Soil With Heavy Hydrocarbons

    Get PDF
    ABSTRACT: The concurrence of structurally complex petroleum-associated contaminants at relatively high concentrations, with diverse climatic conditions and textural soil characteristics, hinders conventional bioremediation processes. Recalcitrant compounds such as high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) and heavy alkanes commonly remain after standard soil bioremediation at concentrations above regulatory limits. The present study assessed the potential of native fungal bioaugmentation as a strategy to promote the bioremediation of an aged industrially polluted soil enriched with heavy hydrocarbon fractions. Microcosms assays were performed by means of biostimulation and bioaugmentation, by inoculating a defined consortium of six potentially hydrocarbonoclastic fungi belonging to the genera Penicillium, Ulocladium, Aspergillus, and Fusarium, which were isolated previously from the polluted soil. The biodegradation performance of fungal bioaugmentation was compared with soil biostimulation (water and nutrient addition) and with untreated soil as a control. Fungal bioaugmentation resulted in a higher biodegradation of total petroleum hydrocarbons (TPH) and of HMW-PAHs than with biostimulation. TPH (C14-C35) decreased by a 39.90 ± 1.99% in bioaugmented microcosms vs. a 24.17 ± 1.31% in biostimulated microcosms. As for the effect of fungal bioaugmentation on HMW-PAHs, the 5-ringed benzo(a)fluoranthene and benzo(a)pyrene were reduced by a 36% and 46%, respectively, while the 6-ringed benzoperylene decreased by a 28%, after 120 days of treatment. Biostimulated microcosm exhibited a significantly lower reduction of 5- and 6-ringed PAHs (8% and 5% respectively). Higher TPH and HMW-PAHs biodegradation levels in bioaugmented microcosms were also associated to a significant decrease in acute ecotoxicity (EC50) by Vibrio fischeri bioluminiscence inhibition assays. Molecular profiling and counting of viable hydrocarbon-degrading bacteria from soil microcosms revealed that fungal bioaugmentation promoted the growth of autochthonous active hydrocarbon-degrading bacteria. The implementation of such an approach to enhance hydrocarbon biodegradation should be considered as a novel bioremediation strategy for the treatment of the most recalcitrant and highly genotoxic hydrocarbons in aged industrially polluted soils

    Characterization of microbial community dynamics during the anaerobic co-digestion of thermally pre-treated slaughterhouse wastes with glycerin addition

    Get PDF
    Microbial community dynamics during the anaerobic co-digestion of pig manure, pasteurized slaughterhouse waste and glycerin were studied in a lab-scale CSTR. The feed composition was optimized through progressive co-substrate additions for enhanced methane production and organic matter removal without accumulation of intermediate compoundsPostprint (author's final draft

    Breeding farm, level of feeding and presence of antibiotics in the feed influence rabbit cecal microbiota

    Get PDF
    Background The effect of the production environment and different management practices in rabbit cecal microbiota remains poorly understood. While previous studies have proved the impact of the age or the feed composition, research in the breeding farm and other animal management aspects, such as the presence of antibiotics in the feed or the level of feeding, is still needed. Characterization of microbial diversity and composition of growing rabbits raised under different conditions could help better understand the role these practices play in cecal microbial communities and how it may result in different animal performance. Results Four hundred twenty-five meat rabbits raised in two different facilities, fed under two feeding regimes (ad libitum or restricted) with feed supplemented or free of antibiotics, were selected for this study. A 16S rRNA gene-based assessment through the MiSeq Illumina sequencing platform was performed on cecal samples collected from these individuals at slaughter. Different univariate and multivariate approaches were conducted to unravel the influence of the different factors on microbial alpha diversity and composition at phylum, genus and OTU taxonomic levels. The animals raised in the facility harboring the most stable environmental conditions had greater, and less variable, microbial richness and diversity. Bootstrap univariate analyses of variance and sparse partial least squares-discriminant analyses endorsed that farm conditions exerted an important influence on rabbit microbiota since the relative abundances of many taxa were found differentially represented between both facilities at all taxonomic levels characterized. Furthermore, only five OTUs were needed to achieve a perfect classification of samples according to the facility where animals were raised. The level of feeding and the presence of antibiotics did not modify the global alpha diversity but had an impact on some bacteria relative abundances, albeit in a small number of taxa compared with farm, which is consistent with the lower sample classification power according to these factors achieved using microbial information. Conclusions This study reveals that factors associated with the farm effect and other management factors, such as the presence of antibiotics in the diet or the feeding level, modify cecal microbial communities. It highlights the importance of offering a controlled breeding environment that reduces differences in microbial cecal composition that could be responsible for different animal performance.info:eu-repo/semantics/publishedVersio

    Fast acquisition of a polysaccharide fermenting gut microbiome by juvenile green turtles Chelonia mydas after settlement in coastal habitats

    Get PDF
    Background: Tetrapods do not express hydrolases for cellulose and hemicellulose assimilation, and hence, the independent acquisition of herbivory required the establishment of new endosymbiotic relationships between tetrapods and microbes. Green turtles (Chelonia mydas) are one of the three groups of marine tetrapods with an herbivorous diet and which acquire it after several years consuming pelagic animals. We characterized the microbiota present in the feces and rectum of 24 young wild and captive green turtles from the coastal waters of Brazil, with curved carapace length ranging from 31.1 to 64.7 cm, to test the hypotheses that (1) the ontogenetic dietary shift after settlement is followed by a gradual change in the composition and diversity of the gut microbiome, (2) differences exist between the composition and diversity of the gut microbiome of green turtles from tropical and subtropical regions, and (3) the consumption of omnivorous diets modifies the gut microbiota of green turtles. Results: A genomic library of 2,186,596 valid bacterial 16S rRNA reads was obtained and these sequences were grouped into 6321 different operational taxonomic units (at 97% sequence homology cutoff). The results indicated that most of the juvenile green turtles less than 45 cm of curved carapace length exhibited a fecal microbiota co-dominated by representatives of the phyla Bacteroidetes and Firmicutes and high levels of Clostridiaceae, Prophyromonas, Ruminococaceae, and Lachnospiraceae within the latter phylum. Furthermore, this was the only microbiota profile found in wild green turtles > 45 cm CCL and in most of the captive green turtles of any size feeding on a macroalgae/fish mixed diet. Nevertheless, microbial diversity increased with turtle size and was higher in turtles from tropical than from subtropical regions. Conclusions: These results indicate that juvenile green turtles from the coastal waters of Brazil had the same general microbiota, regardless of body size and origin, and suggest a fast acquisition of a polysaccharide fermenting gut microbiota by juvenile green turtles after settlement into coastal habitats.info:eu-repo/semantics/publishedVersio

    Effects of partially saturated conditions on the metabolically active microbiome and on nitrogen removal in vertical subsurface flow constructed wetlands

    Get PDF
    Nitrogen dynamics and its association to metabolically active microbial populations were assessed in two vertical subsurface vertical flow (VF) wetlands treating urban wastewater. These VF wetlands were operated in parallel with unsaturated (UVF) and partially saturated (SVF) configurations. The SVF wetland exhibited almost 2-fold higher total nitrogen removal rate (5 g TN m−2 d−1) in relation to the UVF wetland (3 g TN m−2 d−1), as well as a low NOx-N accumulation (1 mg L−1 vs. 26 mg L−1 in SVF and UVF wetland effluents, respectively). After 6 months of operation, ammonia oxidizing prokaryotes (AOP) and nitrite oxidizing bacteria (NOB) displayed an important role in both wetlands. Oxygen availability and ammonia limiting conditions promoted shifts on the metabolically active nitrifying community within ‘nitrification aggregates’ of wetland biofilms. Ammonia oxidizing archaea (AOA) and Nitrospira spp. overcame ammonia oxidizing bacteria (AOB) in the oxic layers of both wetlands. Microbial quantitative and diversity assessments revealed a positive correlation between Nitrobacter and AOA, whereas Nitrospira resulted negatively correlated with Nitrobacter and AOB populations. The denitrifying gene expression was enhanced mainly in the bottom layer of the SVF wetland, in concomitance with the depletion of NOx-N from wastewater. Functional gene expression of nitrifying and denitrifying populations combined with the active microbiome diversity brought new insights on the microbial nitrogen-cycling occurring within VF wetland biofilms under different operational conditions.info:eu-repo/semantics/acceptedVersio

    Microbial community dynamics in two-chambered microbial fuel cells: effect of different ion exchange membranes

    Get PDF
    The utilization of different kinds of ion exchange membrane is a common practice in bioelectrochemical systems such as two-chambered microbial fuel cells (MFCs). However, little is known on the effect of the membrane materials on the anodic microbial community diversity.ResultsThe effect of two cationic and one anionic exchange membranes (Nafion N-117, Ultrex CMI-7000, and Ultrex AMI-7000) on the microbial community dynamics of Eubacteria and Archaea has been assessed in two-chambered MFCs. The experimental results indicated that the eubacterial community in the anodic chamber was not affected by the membrane materials, being predominant populations of Bacteroidetes (Porphyromonadaceae) and β-proteobacteria (Alcaligenaceae and Comamonadaceae). On the other hand, the archaeal counterpart appears to be highly dependent on the type of membrane used, as it was evidenced by the selective enrichment of Methanosarcina sp. in the MFC equipped with the membrane Nafion N-117 which was the MFC that showed the highest current production.Conclusions The results obtained in the present study suggest that membrane materials affect archaeal diversity whereas both anodofilic eubacteria and methanogenic archaea populations could play an important role on the overall MFC process performance

    Rabbit Microbiota Changes Throughout the Intestinal Tract

    Get PDF
    To gain insight into the importance of carefully selecting the sampling area for intestinal microbiota studies, cecal and fecal microbial communities of Caldes meat rabbit were characterized. The animals involved in the study were divided in two groups according to the feed intake level they received during the fattening period; ad libitum (n = 10) or restricted to 75% of ad libitum intake (n = 11). Cecum and internal hard feces were sampled from sacrificed animals. Assessment of bacterial and archaeal populations was performed by means of Illumina sequencing of 16S rRNA gene amplicons in a MiSeq platform. A total of 596 operational taxonomic units (OTUs) were detected using QIIME software. Taxonomic assignment revealed that microbial diversity was dominated by phyla Firmicutes (76.42%), Tenericutes (7.83%), and Bacteroidetes (7.42%); kingdom Archaea was presented at low percentage (0.61%). No significant differences were detected between sampling origins in microbial diversity or richness assessed using two alpha-diversity indexes: Shannon and the observed number of OTUs. However, the analysis of variance at genus level revealed a higher presence of genera Clostridium, Anaerofustis, Blautia, Akkermansia, rc4-4, and Bacteroides in cecal samples. By contrast, genera Oscillospira and Coprococcus were found to be overrepresented in feces, suggesting that bacterial species of these genera would act as fermenters at the end of feed digestion process. At the lowest taxonomic level, 83 and 97 OTUs in feces and cecum, respectively, were differentially represented. Multivariate statistical assessment revealed that sparse partial least squares discriminant analysis (sPLSDA) was the best approach for this purpose. Interestingly, the majority of the most discriminative OTUs selected by sPLS-DA were found to be differentially represented between sampling origins in univariate analysis. Our study provides evidence that the choice of intestinal sampling area is relevant due to important differences in some taxa’s relative abundance that have been revealed between rabbits’ cecal and fecal microbiota. An appropriate sampling intestinal area should be chosen in each microbiota assessment.info:eu-repo/semantics/publishedVersio

    Rabbit Microbiota Changes Throughout the Intestinal Tract

    Get PDF
    To gain insight into the importance of carefully selecting the sampling area for intestinal microbiota studies, cecal and fecal microbial communities of Caldes meat rabbit were characterized. The animals involved in the study were divided in two groups according to the feed intake level they received during the fattening period; ad libitum (n = 10) or restricted to 75% of ad libitum intake (n = 11). Cecum and internal hard feces were sampled from sacrificed animals. Assessment of bacterial and archaeal populations was performed by means of Illumina sequencing of 16S rRNA gene amplicons in a MiSeq platform. A total of 596 operational taxonomic units (OTUs) were detected using QIIME software. Taxonomic assignment revealed that microbial diversity was dominated by phyla Firmicutes (76.42%), Tenericutes (7.83%), and Bacteroidetes (7.42%); kingdom Archaea was presented at low percentage (0.61%). No significant differences were detected between sampling origins in microbial diversity or richness assessed using two alpha-diversity indexes: Shannon and the observed number of OTUs. However, the analysis of variance at genus level revealed a higher presence of genera Clostridium, Anaerofustis, Blautia, Akkermansia, rc4-4, and Bacteroides in cecal samples. By contrast, genera Oscillospira and Coprococcus were found to be overrepresented in feces, suggesting that bacterial species of these genera would act as fermenters at the end of feed digestion process. At the lowest taxonomic level, 83 and 97 OTUs in feces and cecum, respectively, were differentially represented. Multivariate statistical assessment revealed that sparse partial least squares discriminant analysis (sPLS-DA) was the best approach for this purpose. Interestingly, the majority of the most discriminative OTUs selected by sPLS-DA were found to be differentially represented between sampling origins in univariate analysis. Our study provides evidence that the choice of intestinal sampling area is relevant due to important differences in some taxa’s relative abundance that have been revealed between rabbits’ cecal and fecal microbiota. An appropriate sampling intestinal area should be chosen in each microbiota assessment
    corecore